ESM 2B, Homework 5

Due Date: 14:00 Wednesday, 16 March 2011.

Explain your answers! Problems marked (\star) are bonus ones.

5.1. Compute the characteristic polynomial and find the eigenvalues (with multiplicities), eigenvectors, and bases of eigenspaces for the following matrices. Which of them are diagonalizable?

(a)
$$\begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 2 & 1 \\ 1 & 4 & 0 \\ -1 & 1 & 3 \end{pmatrix}$ (c) $\begin{pmatrix} -3 & -3 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 & 1 \\ -4 & -4 & 0 \\ 0 & 1 & 3 \end{pmatrix}$ (e) $\begin{pmatrix} 4 & -3 & 3 \\ -2 & 2 & -2 \\ -8 & 7 & -7 \end{pmatrix}$

- **5.2.** Show that
 - (a) the product of eigenvalues of A equals $\det A$;
 - (b)(\star) the sum of eigenvalues of A equals tr A.
- **5.3.** Decide which of the following matrices are diagonalizable. If so, find a diagonal matrix D and an invertible matrix C such that $A = CDC^{-1}$.

(a)
$$A = \begin{pmatrix} 0 & 1 \\ 3 & 5 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$ (c) $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (d) $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 2 \end{pmatrix}$

- **5.4.** Let x_1, \ldots, x_n be complex numbers.
 - (a) Compute the following determinant

$$\begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{vmatrix}$$

(b)(\star) Prove the following equality (Vandermonde determinant):

$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

Hint: use *Bezout Theorem*: if a is a root of a polynomial P(x), then $P(x) = (x-a)P_1(x)$ for some polynomial $P_1(x)$.

 $(c)(\star)$ Show that eigenvectors of matrix $A \in \operatorname{Mat}_n$ with mutually distinct eigenvalues are linearly independent.