ESM 2B, Homework 7

Due Date: 14:00 Wednesday, 6 April 2011.
Explain your answers! Problems marked (\star) are bonus ones.
7.1. Consider the vector space $C^{1}[0,1]$ of differentiable functions on $[0,1]$ with continuous derivative. Which of the following maps $\|\cdot\|: C^{1}[0,1] \rightarrow \mathbb{R}$ are norms?
(a) $\|f\|=\sup _{x \in[0,1]}|f(x)|$;
(b) $\|f\|=\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|$;
(c) $\|f\|=\sup _{x \in[0,1]}|f(x)-f(0)|$;
(d) $\|f\|=\sup _{x \in[0,1]}\left|f^{5}(x)\right|$;
(e) $\|f\|=\sup _{x \in[0,1]}\left|f(x)+f^{\prime}(x)\right|$;
(f) $\|f\|=\sup _{x \in[0,1]}\left|f(0)+f^{\prime}(x)+f(1)\right|$.
7.2. Let P_{3} be the vector space of polynomials with real coeffcients of degree less than or equal to 3 . For any $p, q \in P_{3}$ consider the inner product

$$
\langle p \mid q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left\{1, x, x^{2}, x^{3}\right\}$ to obtain an orthonormal basis.
7.3. Consider the vector space of continuous real-valued functions on $[0,2 \pi]$ with inner product

$$
\langle f \mid g\rangle=\int_{0}^{2 \pi} f(x) g(x) d x
$$

Show that any two distinct functions from the set $\{1, \cos n x, \sin n x \mid n \in \mathbb{N}\}$ are mutually orthogonal.
7.4. (a) Show that any norm induced by inner product satisfies the parallelogramm identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

(b) Give an example of two continuous functions f, g on $[0,1]$ for which

$$
\|f+g\|_{\infty}^{2}+\|f-g\|_{\infty}^{2} \neq 2\|f\|_{\infty}^{2}+2\|g\|_{\infty}^{2}
$$

where $\|f\|_{\infty}$ is the norm defined in Problem 1(a).
7.5. (\star) Define the vector space ℓ^{p} as the space of all infinite sequences $\left\{x_{n}\right\}$ of real numbers such that the series $\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}$ converges. For which p and k the inclusion $\ell^{p} \subset \ell^{p+k}$ holds?

