ESM 2B, Homework 8

Due Date: 14:00 Wednesday, 13 April 2011.

Explain your answers! Problems marked (\star) are bonus ones.

- **8.1.** Write down Fourier series for the following functions from $L^2([-\pi,\pi])$.
 - (a) f(x) = |x|;
 - (b) $f(x) = \sin^2(x);$
 - (c) $f(x) = \cos^2(2x);$
 - (d) $f(x) = \sin^2(x) x^2$.
- **8.2.** Write down Fourier series for the following functions from $L^2([0,\pi])$.
 - (a) f(x) = x; (a) $f(x) = x^2$.
- **8.3.** Find the Fourier series of the function f(x) defined by

$$f(x) = \begin{cases} 2 & \text{if } -\pi \le x < 0\\ -1 & \text{if } 0 \le x < \pi \end{cases}$$

and having period 2π . Does the Fourier series converge at x = 0? If yes, what is the limit?

8.4. Let f be a real-valued 2π -periodic function with Fourier series

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

(a) Show that $c_n = \overline{c_{-n}}$.

Find (complex) Fourier coefficients for the following functions:

- (b) $f(x x_0)$ for some fixed x_0 ;
- (c) f(-x);
- (d) f'(3x).
- **8.5.** (*) Use Fourier series of function $f(x) = (\pi x)/2$ on $[0, 2\pi]$ to compute the sum of the series

$$1 - \frac{1}{3} + \frac{1}{5} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$$