ESM 2B, Homework 9

Due Date: 14:00 Wednesday, 27 April 2011.

Explain your answers! Problems marked (\star) are bonus ones.

9.1. Find the Fourier transform of the following functions:

(a)
$$f(x) = e^{-\alpha x^2}$$
 (use the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$);

- (b) $f(x) = xe^{-|x|}$; (c)(\star) $f(x) = \sin xe^{-|x|}$.
- **9.2.** Assuming Fourier transform of a function f(x) to be $\hat{f}(y)$, compute the Fourier transform of (a) $g(x) = f(x-a), a \in \mathbb{R};$ (b) g(x) = f(x/a), a > 0.
- **9.3.** Consider the following equation

$$\frac{d^2u}{dx^2} - u(x) = f(x)$$

with respect to u. Show that the solution u(x) can be written as

$$u(x) = \frac{-1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{iyx} \, \hat{f}(y)}{1 + y^2} \, dy$$

where $\hat{f}(y)$ is the Fourier transform of f(x).

9.4. Let f * g be a convolution of two functions. Show that

(a)
$$f * g = g * f$$
; (b) $(f * g) * h = f * (g * h)$; (c) $f * (g + h) = f * g + f * h$.

- (d) Is it true that (f * g)h = f * (gh)?
- **9.5.** Let $\delta(x)$ be the δ -function. Compute

(a)
$$\int_{-3}^{2} \delta(x)(2-2x^2+e^x) dx$$
; (b) $\int_{-3}^{2} \delta(x+1)(1+2x^3-\cos^3(\pi x)) dx$;
(c) $\int_{-3}^{2} \delta(x-3)e^{-2x^2}\cos x dx$; (d)(*) $\int_{-2\pi}^{2\pi} \delta(x^2-\pi^2)\cos x dx$; (e)(*) $\int_{-2\pi}^{2\pi} \delta(4x^2-\pi^2)\sin x dx$.

(c)
$$\int_{-3}^{2} \delta(x-3)e^{-2x^2} \cos x \, dx$$
; (d)(\star) $\int_{-2\pi}^{2\pi} \delta(x^2-\pi^2) \cos x \, dx$; (e)(\star) $\int_{-2\pi}^{2\pi} \delta(4x^2-\pi^2) \sin x \, dx$

9.6. Compute Laplace transform of the following functions:

(a)
$$f(x) = 2$$
; (b) $f(x) = x^n$; (c)(\star) $f(x) = \sin \alpha x$; (d)(\star) $f(x) = x \cos \alpha x$