Linear Algebra II, Bonus homework Introduction to fields

Due Date: Wednesday, May 4, in class.
Definition. A field is a set \mathbb{F} with two binary operations " + " and "." on \mathbb{F} called addition and multiplication satisfying the following properties:

1. $\forall a, b \in \mathbb{F} \quad a+b=b+a$;
2. $\forall a, b, c \in \mathbb{F} \quad(a+b)+c=a+(b+c)$;
3. there exists an element $0 \in \mathbb{F}$ such that $\forall a \in \mathbb{F} \quad a+0=a ;$
4. $\forall a \in \mathbb{F} \exists b \in \mathbb{F} \quad a+b=0 ; b$ is called opposite to a and is denoted by $-a$;
5. $\forall a, b \in \mathbb{F} \quad(a \cdot b)=(b \cdot a) ;$
6. $\forall a, b, c \in \mathbb{F} \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$;
7. there exists an element $1 \in \mathbb{F}$ such that $\forall a \in \mathbb{F} \quad a \cdot 1=a$, and $1 \neq 0$;
8. $\forall a \neq 0 \exists b \in \mathbb{F} \quad a \cdot b=1 ; b$ is called inverse to a and is denoted by a^{-1} or $\frac{1}{a}$;
9. $\forall a, b, c \in \mathbb{F} \quad(a+b) \cdot c=a \cdot c+b \cdot c$.

B.1. Show that

(a) 0 is unique; 1 is unique;
(b) the opposite element is unique; the inverse element is unique;
(c) the equation $a+x=b$ has a unique solution in \mathbb{F}; the equation $a \cdot x=b$ has a unique solution in \mathbb{F} for any $a \neq 0$;
(d) $a \cdot b=0$ implies $a=0$ or $b=0$.
B.2. Show that the set $\{0,1, \ldots, p-1\}$ (p is prime) with operations of addition and multiplication modulo p is a field (notation: \mathbb{Z}_{p} or \mathbb{F}_{p}).

Definition. $\mathbb{F}_{0} \subset \mathbb{F}$ is a subfield of \mathbb{F} if \mathbb{F}_{0} is a field with respect to operations of \mathbb{F}.
B.3. (a) Define $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R}.
(b) Is the following set $\{a+b \sqrt{2}+c \sqrt{3} \mid a, b, c \in \mathbb{Q}\}$ a subfield of \mathbb{R} ?
(c) Find all subfields of $\mathbb{Q}, \mathbb{Z}_{p}, \mathbb{Q}[\sqrt{2}]$.

Definition. A map $\psi: \mathbb{F} \rightarrow \mathbb{F}^{\prime}$ is an isomorphism of fields \mathbb{F} and \mathbb{F}^{\prime} if ψ is bijective, and $\forall a, b \in \mathbb{F} \quad \psi(a b)=\psi(a) \psi(b), \psi(a+b)=\psi(a)+\psi(b)$. Fields \mathbb{F} and \mathbb{F}^{\prime} are isomorphic if there exists an isomorphism from \mathbb{F} to \mathbb{F}^{\prime}.
B.4. (a) Isomorphism is equivalence relation.
(b) Every field has a subfield isomorphic either to \mathbb{Q} or to \mathbb{Z}_{p}.

Definition. A field \mathbb{F} has characteristic p (or 0) if it contains a subfield isomorphic to \mathbb{Z}_{p} (respectively, \mathbb{Q}). Notation: char $\mathbb{F}=p(\operatorname{char} \mathbb{F}=0)$.
B.5. (a) Show that characteristic is well-defined.
(b) Which of the fields $\mathbb{Z}_{p}, \mathbb{Q}, \mathbb{Q}[\sqrt{2}], \mathbb{R}$ are isomorphic?
B.6. (a) If \mathbb{F} is finite and char $\mathbb{F}=p$, then the map $x \rightarrow x^{p}$ is an automorphism of \mathbb{F} (i.e. isomorphism onto itself).
(b) For \mathbb{Z}_{p} the map $x \rightarrow x^{p}$ is an identity (Fermat Theorem).
B.7. (a) Show that there exists a unique (up to isomorphism) field consisting of 4 elements. What is the characteristic?
(b) Show that all fields consisting of p elements are isomorphic.
B.8. Is it true that the equation $x^{2}=a$ for $a \neq 0$ has either 2 or 0 solutions?
B.9. Any finite field of characteristic p contains exactly p^{n} elements for some integer n.
B.10. For a field \mathbb{F} and $c \in \mathbb{F}$ denote by $\mathbb{F}[\sqrt{c}]$ the set $\mathbb{F} \times \mathbb{F}$ with operations

1) $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$;
2) $\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}+c b_{1} b_{2}, a_{1} b_{2}+a_{2} b_{1}\right)$.

For which c the set $\mathbb{F}[\sqrt{c}]$ will be a field if
(a) $\mathbb{F}=\mathbb{R}$;
(b) $\mathbb{F}=\mathbb{Q}$;
(c) $\mathbb{F}=\mathbb{Z}_{p}, p=2,3,5,7$?
B.11. Which fields from the previous problem are isomorphic?
B.12. For every odd prime p there exists c such that $\mathbb{Z}_{p}[\sqrt{c}]$ is a field.
B.13. For any prime p
(a) there exists a field of p^{2} elements;
(b) for any positive integer n there exists a field of p^{n} elements;
(c) a field of p^{n} elements is unique up to isomorphism.
B.14. For any finite field \mathbb{F} there is an element $x_{0} \in \mathbb{F}$ such that every non-zero element of F is a power of x_{0}, i.e for any $x \in \mathbb{F}, x \neq 0$, there is $n \in \mathbb{N}$ with $x=x_{0}^{n}$.
B.15. Give an example of
(a) an infinite field of characteristic p;
(b) a field \mathbb{F} isomorphic to its proper subfield \mathbb{F}_{0} (i.e. $\mathbb{F} \neq \mathbb{F}_{0}$).
B.16. Let p_{1}, \ldots, p_{n} be distinct prime numbers, k_{1}, \ldots, k_{n} are non-zero integers. Then

$$
k_{1} \sqrt{p_{1}}+k_{2} \sqrt{p_{2}}+\cdots+k_{n} \sqrt{p_{n}} \notin \mathbb{Q}
$$

