Linear Algebra II, Bonus homework Introduction to fields

Due Date: Wednesday, May 4, in class.

Definition. A *field* is a set \mathbb{F} with two binary operations "+" and "." on \mathbb{F} called *addition* and *multiplication* satisfying the following properties:

- <u>1</u>. $\forall a, b \in \mathbb{F}$ a+b=b+a;
- $\underline{2}. \ \forall a, b, c \in \mathbb{F} \quad (a+b) + c = a + (b+c);$
- <u>3</u>. there exists an element $0 \in \mathbb{F}$ such that $\forall a \in \mathbb{F} \quad a + 0 = a$;
- <u>4</u>. $\forall a \in \mathbb{F} \exists b \in \mathbb{F} \quad a+b=0; b \text{ is called opposite to } a \text{ and is denoted by } -a;$

 $\underline{5}. \ \forall a, b \in \mathbb{F} \quad (a \cdot b) = (b \cdot a);$

- $\underline{6}. \ \forall a, b, c \in \mathbb{F} \quad (a \cdot b) \cdot c = a \cdot (b \cdot c);$
- <u>7</u>. there exists an element $1 \in \mathbb{F}$ such that $\forall a \in \mathbb{F} \quad a \cdot 1 = a$, and $1 \neq 0$;
- 8. $\forall a \neq 0 \ \exists b \in \mathbb{F}$ $a \cdot b = 1; b \text{ is called inverse to } a \text{ and is denoted by } a^{-1} \text{ or } \frac{1}{a};$
- $\underline{9}. \ \forall a, b, c \in \mathbb{F} \quad (a+b) \cdot c = a \cdot c + b \cdot c.$

B.1. Show that

- (a) 0 is unique; 1 is unique;
- (b) the opposite element is unique; the inverse element is unique;

(c) the equation a + x = b has a unique solution in \mathbb{F} ; the equation $a \cdot x = b$ has a unique solution in \mathbb{F} for any $a \neq 0$;

- (d) $a \cdot b = 0$ implies a = 0 or b = 0.
- **B.2.** Show that the set $\{0, 1, \ldots, p-1\}$ (p is prime) with operations of addition and multiplication modulo p is a field (notation: \mathbb{Z}_p or \mathbb{F}_p).

Definition. $\mathbb{F}_0 \subset \mathbb{F}$ is a *subfield* of \mathbb{F} if \mathbb{F}_0 is a field with respect to operations of \mathbb{F} .

- **B.3.** (a) Define $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R} .
 - (b) Is the following set $\{a + b\sqrt{2} + c\sqrt{3} | a, b, c \in \mathbb{Q}\}$ a subfield of \mathbb{R} ?
 - (c) Find all subfields of \mathbb{Q} , \mathbb{Z}_p , $\mathbb{Q}[\sqrt{2}]$.

Definition. A map $\psi : \mathbb{F} \to \mathbb{F}'$ is an *isomorphism of fields* \mathbb{F} and \mathbb{F}' if ψ is bijective, and $\forall a, b \in \mathbb{F} \quad \psi(ab) = \psi(a)\psi(b), \ \psi(a+b) = \psi(a) + \psi(b)$. Fields \mathbb{F} and \mathbb{F}' are *isomorphic* if there exists an isomorphism from \mathbb{F} to \mathbb{F}' .

- **B.4.** (a) Isomorphism is equivalence relation.
 - (b) Every field has a subfield isomorphic either to \mathbb{Q} or to \mathbb{Z}_p .

Definition. A field \mathbb{F} has *characteristic* p (or 0) if it contains a subfield isomorphic to \mathbb{Z}_p (respectively, \mathbb{Q}). Notation: char $\mathbb{F} = p$ (char $\mathbb{F} = 0$).

- **B.5.** (a) Show that characteristic is well-defined.
 - (b) Which of the fields \mathbb{Z}_p , \mathbb{Q} , $\mathbb{Q}[\sqrt{2}]$, \mathbb{R} are isomorphic?
- **B.6.** (a) If \mathbb{F} is finite and char $\mathbb{F} = p$, then the map $x \to x^p$ is an automorphism of \mathbb{F} (i.e. isomorphism onto itself).
 - (b) For \mathbb{Z}_p the map $x \to x^p$ is an identity (Fermat Theorem).
- **B.7.** (a) Show that there exists a unique (up to isomorphism) field consisting of 4 elements. What is the characteristic?
 - (b) Show that all fields consisting of p elements are isomorphic.
- **B.8.** Is it true that the equation $x^2 = a$ for $a \neq 0$ has either 2 or 0 solutions?
- **B.9.** Any finite field of characteristic p contains exactly p^n elements for some integer n.
- **B.10.** For a field \mathbb{F} and $c \in \mathbb{F}$ denote by $\mathbb{F}[\sqrt{c}]$ the set $\mathbb{F} \times \mathbb{F}$ with operations
 - 1) $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$
 - 2) $(a_1, b_1) \cdot (a_2, b_2) = (a_1a_2 + cb_1b_2, a_1b_2 + a_2b_1).$
 - For which c the set $\mathbb{F}[\sqrt{c}]$ will be a field if

(a) $\mathbb{F} = \mathbb{R}$; (b) $\mathbb{F} = \mathbb{Q}$; (c) $\mathbb{F} = \mathbb{Z}_p, p = 2, 3, 5, 7$?

- **B.11.** Which fields from the previous problem are isomorphic?
- **B.12.** For every odd prime p there exists c such that $\mathbb{Z}_p[\sqrt{c}]$ is a field.
- **B.13.** For any prime p
 - (a) there exists a field of p^2 elements;
 - (b) for any positive integer n there exists a field of p^n elements;
 - (c) a field of p^n elements is unique up to isomorphism.
- **B.14.** For any finite field \mathbb{F} there is an element $x_0 \in \mathbb{F}$ such that every non-zero element of F is a power of x_0 , i.e for any $x \in \mathbb{F}$, $x \neq 0$, there is $n \in \mathbb{N}$ with $x = x_0^n$.
- **B.15.** Give an example of
 - (a) an infinite field of characteristic p;
 - (b) a field \mathbb{F} isomorphic to its proper subfield \mathbb{F}_0 (i.e. $\mathbb{F} \neq \mathbb{F}_0$).
- **B.16.** Let p_1, \ldots, p_n be distinct prime numbers, k_1, \ldots, k_n are non-zero integers. Then

$$k_1\sqrt{p_1} + k_2\sqrt{p_2} + \dots + k_n\sqrt{p_n} \notin \mathbb{Q}$$