School of Engineering and Science

Linear Algebra II, Homework 1

Due Date: Wednesday, February 16, in class.

Problems marked (\star) are bonus ones.
1.1. Find the Jordan normal form and the associated basis of the following matrices:
(a) $\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}4 & 1 \\ -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
(d) $\left(\begin{array}{cccc}3 & -1 & 1 & 7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4\end{array}\right)$
1.2. Compute
(a) $\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)^{15}$
(b) $\left(\begin{array}{cc}-1 & -1 \\ 4 & 3\end{array}\right)^{20}$
(c) $\left(\begin{array}{lll}1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7\end{array}\right)^{30}$
(d) $\exp \left(\begin{array}{cc}1 & -4 \\ -4 & 8\end{array}\right)$
1.3. Find eigenvalues, eigenvectors, generalized eigenspaces and Jordan normal form of the following operators on the space of real polynomials of degree at most n :
(a) $p(x) \rightarrow p^{\prime}(x)$;
(b) $p(x) \rightarrow p^{(k)}(x)$.
1.4. (\star) Show that characteristic polynomials of matrices $A B$ and $B A$ coincide.

