Linear Algebra II, Homework 10

Due Date: Wednesday, April 27, in class.

Problems marked (\star) are bonus ones.
10.1. Show that ellipse, hyperbola, and parabola on the plane are projectively equivalent.
10.2. In 3 -dimensional space four planes pass through a line l, and a line m intersects all the four planes (but not the line l). Show that the cross-ratio of the intersection points of m with the planes does not depend on the choice of m.

The points x_{1}, \ldots, x_{k} are collinear if they belong to one line.
10.3. (a) How many distinct values does the cross-ratio of four points on a line take when the order of the points is changed?
(b) Given five distinct collinear points $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, show that

$$
\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\left[x_{1}, x_{2}, x_{4}, x_{5}\right]\left[x_{1}, x_{2}, x_{5}, x_{3}\right]=1
$$

10.4. Let $\rho=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be cross-ratio of four points. Show that the value

$$
\frac{\left(\rho^{2}-\rho+1\right)^{3}}{\rho^{2}(\rho-1)^{2}}
$$

is invariant under permutations of points $x_{1}, x_{2}, x_{3}, x_{4}$.
10.5. (\star) [Pascal's Theorem] The points x_{1}, \ldots, x_{6} lie on ellips. Let y_{1}, y_{2}, y_{3} be the intersection points of lines $x_{1} x_{2}$ and $x_{4} x_{5}, x_{1} x_{6}$ and $x_{3} x_{4}, x_{2} x_{3}$ and $x_{5} x_{6}$, respectively. Then the points y_{1}, y_{2}, y_{3} are collinear.

