Linear Algebra II, Homework 11

Due Date: Wednesday, May 4, in class.

Problems marked (\star) are bonus ones.

- **11.1.** Let L be an n-dimensional vector space. Show that PGL(L) acts transitively on
 - (a) the set of points of $\mathbb{P}(L)$;

(b) the set of pairs (M_1, M_2) of subspaces of $\mathbb{P}(L)$, such that dim M_1 , dim M_2 and dim $M_1 \cap M_2$ are fixed;

 $(c)(\star)$ the set of *flags*, where *flag* is a collection of subspaces

 $M_0 \subsetneq M_2 \subsetneq \cdots \subsetneq M_{n-2} \subsetneq \mathbb{P}(L), \quad \dim M_i = i$

11.2. Let $L_1, L_2 \subset L, M_1, M_2 \subset M$. Show that

$$(L_1 \otimes M_1) \cap (L_2 \otimes M_2) = (L_1 \otimes L_2) \cap (M_1 \otimes M_2)$$

- **11.3.** Show that the natural map $t: L_1 \times L_2 \to L_1 \otimes L_2$ is bilinear.
- **11.4.** Show that for any factorizable $x \in L_1 \otimes L_2$ there is a unique representation

$$x = x_1 \otimes x_2 \qquad x_1 \in L_1, x_2 \in L_2$$

up to transformation $x_1 \to \lambda x_1, x_2 \to \lambda^{-1} x_2$.

11.5. (\star) Let A(x, y) be a bilinear function on a Euclidean space L. Suppose also that A(x, y) = 0 as soon as g(x, y) = 0. Show that A is proportional to g.