School of Engineering and Science

## Linear Algebra II, Homework 11

Due Date: Wednesday, May 4, in class.

Problems marked ( $\star$ ) are bonus ones.
11.1. Let $L$ be an $n$-dimensional vector space. Show that $P G L(L)$ acts transitively on
(a) the set of points of $\mathbb{P}(L)$;
(b) the set of pairs $\left(M_{1}, M_{2}\right)$ of subspaces of $\mathbb{P}(L)$, such that $\operatorname{dim} M_{1}, \operatorname{dim} M_{2}$ and $\operatorname{dim} M_{1} \cap M_{2}$ are fixed;
(c) $(\star)$ the set of flags, where flag is a collection of subspaces

$$
M_{0} \subsetneq M_{2} \subsetneq \cdots \subsetneq M_{n-2} \subsetneq \mathbb{P}(L), \quad \operatorname{dim} M_{i}=i
$$

11.2. Let $L_{1}, L_{2} \subset L, M_{1}, M_{2} \subset M$. Show that

$$
\left(L_{1} \otimes M_{1}\right) \cap\left(L_{2} \otimes M_{2}\right)=\left(L_{1} \otimes L_{2}\right) \cap\left(M_{1} \otimes M_{2}\right)
$$

11.3. Show that the natural map $t: L_{1} \times L_{2} \rightarrow L_{1} \otimes L_{2}$ is bilinear.
11.4. Show that for any factorizable $x \in L_{1} \otimes L_{2}$ there is a unique representation

$$
x=x_{1} \otimes x_{2} \quad x_{1} \in L_{1}, x_{2} \in L_{2}
$$

up to transformation $x_{1} \rightarrow \lambda x_{1}, x_{2} \rightarrow \lambda^{-1} x_{2}$.
11.5. $(\star)$ Let $A(x, y)$ be a bilinear function on a Euclidean space $L$. Suppose also that $A(x, y)=0$ as soon as $g(x, y)=0$. Show that $A$ is proportional to $g$.

