School of Engineering and Science

Linear Algebra II, Homework 13

Due Date: Tuesday, May 17.

Problems marked (\star) are bonus ones.
13.1. Let $\operatorname{dim} L=4, f=e^{1} \otimes e_{2}+e^{2} \otimes e_{3}+e^{3} \otimes e_{4} \in T_{1}^{1}(L)$. Find all
(a) $\alpha \in L^{*}$, such that $f(x, \alpha)=0$ for every $x \in L$;
(b) $x \in L$, such that $f(x, \alpha)=0$ for every $\alpha \in L^{*}$.
13.2. (a) Show that for every $f \in \Lambda^{2}(L)$ there is a basis $\left(e_{1}, \ldots, e_{n}\right)$ of L such that

$$
f=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+\cdots+e_{k-1} \wedge e_{k}
$$

for some even k.
(b) Show that $f \in \Lambda^{2}(L)$ is factorizable if and only if $f \wedge f=0$.
13.3. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of L. Show that symmetric tensors of the form

$$
e_{1}^{a_{1}} \cdots e_{n}^{a_{n}}(=S(\underbrace{e_{1} \otimes \cdots \otimes e_{1}}_{a_{1}} \otimes \underbrace{e_{2} \otimes \cdots \otimes e_{2}}_{a_{2}} \otimes \cdots \otimes \underbrace{e_{n} \otimes \cdots \otimes e_{n}}_{a_{n}}), \quad a_{1}+\cdots+a_{n}=q
$$

span the symmetric power $S^{q}(L)$.
13.4. (\star) Let $f \in \operatorname{End}(L),\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of L. Define a symmetric square $S^{2}(f) \in$ $\operatorname{End}\left(S^{2}(L)\right)$ by

$$
\left(S^{2}(f)\right)\left(e_{i} e_{j}\right)=S\left(f\left(e_{i}\right) \otimes f\left(e_{j}\right)\right)
$$

(a) Show that $S^{2}(f)$ is well defined.
(b) Show that $\operatorname{tr} S^{2}(f)=\frac{1}{2}\left((\operatorname{tr} f)^{2}+\operatorname{tr} f^{2}\right)$.
(c) Suppose that the characteristic polynomial of f has roots $\lambda_{1}, \ldots, \lambda_{n}$. Show that the characteristic polynomial of $S^{2}(f)$ has $n(n+1) / 2$ roots $\lambda_{i} \lambda_{j}, 1 \leq i \leq j \leq n$.

