Linear Algebra II, Homework 2

Due Date: Wednesday, February 23, in class.

Problems marked (\star) are bonus ones.

- **2.1.** Which of the following maps $g : \operatorname{Mat}_n(\mathbb{C}) \times \operatorname{Mat}_n(\mathbb{C}) \to \mathbb{C}$ are inner products? Which of them are orthogonal (symplectic, Hermitian), non-degenerate?
 - (a) $g(A, B) = \operatorname{tr} AB;$
 - (b) $g(A, B) = \det AB;$
 - (c) $q(A, B) = \operatorname{tr} AB^t$;
 - (d) $g(A, B) = \operatorname{tr} A\overline{B^t}$.
- **2.2.** Let (L,g) be an inner product space. Show that g(x,y) = 0 implies g(y,x) = 0 for all $x, y \in L$ if and only if g is either orthogonal, or symplectic, or Hermitian, or skew-Hermitian (i.e., $g(x,y) = -\overline{g(y,x)}$).
- **2.3.** Let (L,g) be a finite-dimensional inner product space, g is non-degenerate, dim L = n. Show that Gram matrix of vectors $\{v_1, \ldots, v_n\}$ is non-degenerate if and only if $\{v_1, \ldots, v_n\}$ are linearly independent.
- **2.4.** Let (L, g) be an inner product space, g is non-degenerate.

(a) Prove that if L is finite-dimensional, then for any $f \in L^*$ there exists $l \in L$ such that for any $v \in L$ f(v) = g(l, v).

(b)(\star) Show that if L is infinite-dimensional then (a) may not hold.

Hint. Consider an inner product $g(p,q) = \int_{-1}^{1} pq$ on the space of all polynomials with real coefficients on [-1,1], and f(p) = p(0).

2.5. Let g be an inner product defined on a linear space L. For a subspace L_0 of L define the orthogonal complement $L_0^{\perp} = \{v \in L | g(v, x) = 0 \ \forall x \in L_0\}.$

(a) prove that if L_1 and L_2 are subspaces of L then $(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$;

(b) find L_0^{\perp} if $L = \operatorname{Mat}_n(\mathbb{R})$, L_0 is the subspace consisting of all diagonal matrices, and $g(A, B) = \operatorname{tr} AB^t$.