Linear Algebra II, Homework 2

Due Date: Wednesday, February 23, in class.

Problems marked (\star) are bonus ones.
2.1. Which of the following maps $g: \operatorname{Mat}_{n}(\mathbb{C}) \times \operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ are inner products? Which of them are orthogonal (symplectic, Hermitian), non-degenerate?
(a) $g(A, B)=\operatorname{tr} A B$;
(b) $g(A, B)=\operatorname{det} A B$;
(c) $g(A, B)=\operatorname{tr} A B^{t}$;
(d) $g(A, B)=\operatorname{tr} A \overline{B^{t}}$.
2.2. Let (L, g) be an inner product space. Show that $g(x, y)=0$ implies $g(y, x)=0$ for all $x, y \in L$ if and only if g is either orthogonal, or symplectic, or Hermitian, or skew-Hermitian (i.e., $g(x, y)=-\overline{g(y, x)})$.
2.3. Let (L, g) be a finite-dimensional inner product space, g is non-degenerate, $\operatorname{dim} L=n$. Show that Gram matrix of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ is non-degenerate if and only if $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent.
2.4. Let (L, g) be an inner product space, g is non-degenerate.
(a) Prove that if L is finite-dimensional, then for any $f \in L^{*}$ there exists $l \in L$ such that for any $v \in L f(v)=g(l, v)$.
(b) (\star) Show that if L is infinite-dimensional then (a) may not hold.

Hint. Consider an inner product $g(p, q)=\int_{-1}^{1} p q$ on the space of all polynomials with real coefficients on $[-1,1]$, and $f(p)=p(0)$.
2.5. Let g be an inner product defined on a linear space L. For a subspace L_{0} of L define the orthogonal complement $L_{0}^{\perp}=\left\{v \in L \mid g(v, x)=0 \forall x \in L_{0}\right\}$.
(a) prove that if L_{1} and L_{2} are subspaces of L then $\left(L_{1}+L_{2}\right)^{\perp}=L_{1}^{\perp} \cap L_{2}^{\perp}$;
(b) find L_{0}^{\perp} if $L=\operatorname{Mat}_{n}(\mathbb{R}), L_{0}$ is the subspace consisting of all diagonal matrices, and $g(A, B)=\operatorname{tr} A B^{t}$.

