Linear Algebra II, Homework 3

Due Date: Wednesday, March 2, in class.

Problems marked (\star) are bonus ones.
3.1. Let L be a linear space, $M \subset L$ is a subspace. The annihilator Ann M is a subset of L^{*} defined as follows:

$$
\text { Ann } M=\left\{f \in L^{*} \mid f(l)=0 \forall l \in M\right\}
$$

(a) Show that Ann M is a linear space.
(b) Assuming L to be finite-dimensional, construct explicitely an isomorphism

$$
L^{*} / \operatorname{Ann} M \rightarrow M^{*}
$$

(c) Show that $\operatorname{dim} M+\operatorname{dim} \operatorname{Ann} M=\operatorname{dim} L$.
3.2. Let L be an 3-dimensional real linear space with inner product g. Find the signature of g if the Gram matrix G of g in some basis looks like
(a) $G=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$;
(b) $G=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1\end{array}\right)$.
3.3. Let (L, g) be a real $(n+1)$-dimensional linear space of signature $(n, 1)$. Let $L_{0} \subset L$ be 1 -dimensional subspace, $v \in L, v \neq 0$. Show that
(a) if $(v, v)>0$, then L_{0}^{\perp} has signature $(n-1,1)$;
(b) if $(v, v)<0$, then L_{0}^{\perp} is positive definite;
(c) if v is isotropic, then L_{0}^{\perp} is degenerate, and its signature is $(n-1,0,1)$.
3.4. Show that if (L, g) is an inner product space, and $v \in L$ is not isotropic, then the map

$$
x \rightarrow x-\frac{2(x, v)}{(v, v)} v
$$

(called reflection in v) is an isometry of L.
3.5. (\star) Let M_{2} be the space of all symmetric 2×2 real matrices.
(a) Show that the formula

$$
(A, B)=\frac{1}{2}(\operatorname{det}(A+B)-\operatorname{det} A-\operatorname{det} B)
$$

defines an inner product on M_{2}.
(b) Find the signature of the inner product defined in (a).

