Linear Algebra II, Homework 5

Due Date: Wednesday, March 16, in class.

Problems marked (\star) are bonus ones.
5.1. Use Gram-Schmidt procedure to construct an orthonormal basis of the space of real polynomials of degree at most 4 with inner product $g\left(p_{1}, p_{2}\right)=\int_{0}^{1} p_{1} p_{2}$ starting with basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$.
5.2. Let L be non-degenerate finite-dimensional orthogonal space, $L_{0} \subset L$ is non-degenerate subspace. Show that for any orthogonal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of L_{0} there exists an orthogonal basis $\left\{e_{1}, \ldots, e_{k}, e_{k+1}, \ldots, e_{n}\right\}$ of L containing $\left\{e_{1}, \ldots, e_{k}\right\}$.
5.3. Find a basis of \mathbb{R}^{3} in which the quadratic form $q(x, y, z)=x y+2 y z+z x$ is diagonal with coefficients ± 1 or 0 .
5.4. Find the signature of the quadratic form defined by the matrix

$$
\left(\begin{array}{cccc}
2 & 0 & 3 & -1 \\
0 & 1 & 2 & 2 \\
3 & 2 & -2 & 0 \\
-1 & 2 & 0 & 2
\end{array}\right)
$$

5.5. (\star) Find the signature of the quadratic form on \mathbb{R}^{n} defined by

$$
q(x)=\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}
$$

