School of Engineering and Science

Linear Algebra II, Homework 6

Due Date: Wednesday, March 23, in class.

Problems marked (\star) are bonus ones.
6.1. Let $f: L \rightarrow L$ be an endomorphism of unitary space L. Prove that
(a) if $(f(x), x)=0$ for all $x \in L$ then $f=0$;
(b) if $(f(x), x) \in \mathbb{R}$ for all $x \in L$ then f is Hermitian.
6.2. (a) Every square complex matrix A can be represented in a unique way as a sum $A=B+i C$, where B and C are Hermitian matrices.
(b) Every square complex matrix A can be represented in a unique way as a sum of Hermitian and skew-Hermitian matrices.
6.3. (a) Show that matrices of type

$$
\left(\begin{array}{cc}
x+i y & z+i w \\
-z+i w & x-i y
\end{array}\right), \quad x, y, z, w \in \mathbb{R}, \quad x^{2}+y^{2}+z^{2}+w^{2}=1
$$

form special unitary group $S U(2)$.
(b) Show that matrices of type

$$
\left(\begin{array}{cc}
i y & z+i w \\
-z+i w & -i y
\end{array}\right), \quad y, z, w \in \mathbb{R}
$$

with quadratic form $q(A)=\operatorname{det} A$ compose a 3 -dimensional Euclidean space E.
(c) Show that the map $f: S U(2) \rightarrow S O(3)$ defined by

$$
f(U)(A)=U A U^{-1}
$$

for $U \in S U(2), A \in E$ is a homomorphism of groups.
$(\mathrm{d})(\star)$ Show that f is surjective, and $\operatorname{ker} f= \pm I$.

