Linear Algebra II, Homework 7

Due Date: Wednesday, March 30, in class.

Problems marked (\star) are bonus ones.
7.1. Let L be a unitary space. For every self-adjoint operator f define an inner product

$$
g_{f}(x, y)=(f(x), y)
$$

Show that g_{f} is a well-defined Hermitian inner product, and the map $f \rightarrow g_{f}$ is a bijection between the set of self-adjoint operators and Hermitian forms.
7.2. Give an example of two quadratic forms that cannot be simultaneously diagonalized.
7.3. Let A be a real square matrix. Show that A is symmetric if and only if there exist real invertible matrix C and real diagonal matrix D with

$$
A=C^{-1} D C
$$

7.4. Let f be a normal operator in a unitary space L. Show that
(a) kernels of f and f^{*} coincide;
(b) $\operatorname{im} f=\operatorname{ker} f^{*}$;
(c) images of f and f^{*} coincide;
(d) L is a direct orthogonal sum of the kernel and image of f.

A self-adjoint operator f is non-negative if $(f(x), x) \geq 0$ for every x, and positive if $(f(x), x)>$ 0 for every $x \neq 0$.
7.5. (a) Given any operator f on a unitary space, show that $f^{*} f$ is a non-negative self-adjoint operator, and it is positive if and only if f is invertible.
(b) Show that for any non-negative self-adjoint operator f there exists non-negative selfadjoint operator h such that $f=h^{2}$.
7.6. (\star) Let f_{1}, f_{2} be positive self-adjoint operators. Show that
(a) if h is self-adjoint, $h^{2}=f_{1}$, and f_{1} and f_{2} commute, then h and f_{2} commute;
(b) $f_{1} f_{2}$ is positive self-adjoint if and only if f_{1} and f_{2} commute.

