Linear Algebra II, Homework 8

Due Date: Wednesday, April 6, in class.

Problems marked (\star) are bonus ones.

- 8.1. Show that an operator f in a unitary space is normal if and only if every eigenvector of f is an eigenvector of f^* .
- **8.2.** Let L be an orthogonal space with form

$$(x,y) = -x_0y_0 + \sum_{i=1}^n x_iy_i$$

Let (x, x) < 0 and (y, y) < 0. Show that (x, y) < 0 if and only if $x_0y_0 > 0$.

8.3. Let \mathcal{M} be Minkowski space. Show that

(a) for every two non-collinear time-like vectors $x, y \in \mathcal{M}$ there exists $f \in SO^+(3, 1)$ taking x to y;

(b) for every two non-intersecting 2-planes Π_1 and Π_2 intersecting the light cone there exists $f \in SO^+(3, 1)$ taking Π_1 to Π_2 ;

(c) there is a basis of \mathcal{M} consisting of isotropic vectors.

8.4. (\star) (Polar decomposition)

Let f be an invertible operator in a unitary space. Define r_1, r_2 to be positive self-adjoint operators, such that $r_1^2 = ff^*$, $r_2^2 = f^*f$ (see Problem 7.5b).

(a) Show that there exist unitary operators u_1 , u_2 , such that

$$f = r_1 u_1 = u_2 r_2$$

The representations above are called *polar decompositions* of f.

(b) Show that polar decompositions $f = r_1 u_1 = u_2 r_2$ are unique.