School of Engineering and Science

Linear Algebra II, Homework 8

Due Date: Wednesday, April 6, in class.

Problems marked (\star) are bonus ones.
8.1. Show that an operator f in a unitary space is normal if and only if every eigenvector of f is an eigenvector of f^{*}.
8.2. Let L be an orthogonal space with form

$$
(x, y)=-x_{0} y_{0}+\sum_{i=1}^{n} x_{i} y_{i}
$$

Let $(x, x)<0$ and $(y, y)<0$. Show that $(x, y)<0$ if and only if $x_{0} y_{0}>0$.
8.3. Let \mathcal{M} be Minkowski space. Show that
(a) for every two non-collinear time-like vectors $x, y \in \mathcal{M}$ there exists $f \in S O^{+}(3,1)$ taking x to y;
(b) for every two non-intersecting 2-planes Π_{1} and Π_{2} intersecting the light cone there exists $f \in S O^{+}(3,1)$ taking Π_{1} to Π_{2};
(c) there is a basis of \mathcal{M} consisting of isotropic vectors.

8.4. (\star) (Polar decomposition)

Let f be an invertible operator in a unitary space. Define r_{1}, r_{2} to be positive self-adjoint operators, such that $r_{1}^{2}=f f^{*}, r_{2}^{2}=f^{*} f$ (see Problem 7.5b).
(a) Show that there exist unitary operators u_{1}, u_{2}, such that

$$
f=r_{1} u_{1}=u_{2} r_{2}
$$

The representations above are called polar decompositions of f.
(b) Show that polar decompositions $f=r_{1} u_{1}=u_{2} r_{2}$ are unique.

