Linear Algebra II, Homework 9

Due Date: Wednesday, April 13, in class.

Problems marked (\star) are bonus ones.

- **9.1.** Let A be a skew-symmetric real matrix.
 - (a) Show that A^2 is symmetric, and the orthogonal inner product

$$(x,y) = x^t A^2 y$$

is non-positive definite.

- (b) Show that all non-zero eigenvalues of A are purely imaginary.
- (c)(\star) Is it true that if A is non-degenerate, then A^{-1} is also skew-symmetric?
- **9.2.** Show that for skew-symmetric 4×4 matrix $A = (a_{ij})$ its Pffafian can be written as

Pf
$$A = -a_{12}a_{34} + a_{13}a_{24} - a_{14}a_{23}$$

- **9.3.** Let L be a linear space, $M_1, M_2 \subset L$ are linear subspaces. For any linear space M denote by P(M) the projectivization of M. Show that
 - (a) $P(M_1) \cap P(M_2) = P(M_1 \cap M_2);$
 - (b) $P(M_1 + M_2)$ coincides with the projective span $\overline{P(M_1) \cup P(M_2)}$ of $P(M_1) \cup P(M_2)$.
- **9.4.** Let P_1 be a projective line, and $P_2 \notin P_1$ be a point in projective space \mathbb{FP}^4 . Find $\overline{P_1 \cup P_2}$.
- 9.5. (a) Show that the system of linear equations

$$\sum_{j=0}^{n} a_{ij} x_j = 0, \qquad 1 \le i \le m$$

defines a projective subspace in $\mathbb{F}P^n$.

(b)(\star) Show that any projective subspace in $\mathbb{F}P^n$ can be defined by a system of linear homogeneous equations.