School of Engineering and Science

Linear Algebra II, Homework 9

Due Date: Wednesday, April 13, in class.

Problems marked (\star) are bonus ones.
9.1. Let A be a skew-symmetric real matrix.
(a) Show that A^{2} is symmetric, and the orthogonal inner product

$$
(x, y)=x^{t} A^{2} y
$$

is non-positive definite.
(b) Show that all non-zero eigenvalues of A are purely imaginary.
(c) (\star) Is it true that if A is non-degenerate, then A^{-1} is also skew-symmetric?
9.2. Show that for skew-symmetric 4×4 matrix $A=\left(a_{i j}\right)$ its Pffafian can be written as

$$
\operatorname{Pf} A=-a_{12} a_{34}+a_{13} a_{24}-a_{14} a_{23}
$$

9.3. Let L be a linear space, $M_{1}, M_{2} \subset L$ are linear subspaces. For any linear space M denote by $P(M)$ the projectivization of M. Show that
(a) $P\left(M_{1}\right) \cap P\left(M_{2}\right)=P\left(M_{1} \cap M_{2}\right)$;
(b) $P\left(M_{1}+M_{2}\right)$ coincides with the projective span $\overline{P\left(M_{1}\right) \cup P\left(M_{2}\right)}$ of $P\left(M_{1}\right) \cup P\left(M_{2}\right)$.
9.4. Let P_{1} be a projective line, and $P_{2} \notin P_{1}$ be a point in projective space $\mathbb{F P}^{4}$. Find $\overline{P_{1} \cup P_{2}}$.
9.5. (a) Show that the system of linear equations

$$
\sum_{j=0}^{n} a_{i j} x_{j}=0, \quad 1 \leq i \leq m
$$

defines a projective subspace in $\mathbb{F P}^{n}$.
$(\mathrm{b})(\star)$ Show that any projective subspace in $\mathbb{F P}^{n}$ can be defined by a system of linear homogeneous equations.

