Riemannian Geometry IV, Homework 1 (Week 12)

Due date for starred problems: Wednesday, February 15.

1.1. Rescaling Lemma

Let $c:[0, a] \rightarrow M$ be a geodesic, and $k>0$. Define a curve γ by

$$
\gamma:[0, a / k] \rightarrow M, \quad \gamma(t)=c(k t)
$$

Show that γ is geodesic with $\gamma^{\prime}(t)=k c^{\prime}(k t)$.

1.2. (\star) First Variation Formula of energy

Let $F:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ be a variation of a differentiable curve $c:[a, b] \rightarrow M$ with $c^{\prime}(t) \neq 0$ for all $t \in[a, b]$ and X be its variational vector field. Let $E:(-\epsilon, \epsilon)$ denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

(a) Show that

$$
E^{\prime}(0)=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t
$$

Simplify the formula for the cases when
(b) c is a geodesic,
(c) F is a proper variation,
(d) c is a geodesic and F is a proper variation.

Let $c:[a, b] \rightarrow M$ be a curve connecting p and q (not necessarily parametrized proportional to arc length). Show that
(e) $E^{\prime}(0)=0$ for every proper variation implies that c is a geodesic.
(f) Assume that c minimizes the energy amongst all curves $\gamma:[a, b] \rightarrow M$ which connect p and q. Then c is a geodesic.

