Riemannian Geometry IV, Homework 2 (Week 13)

Due date for starred problems: Wednesday, February 15.

2.1. Let (M,g) be a Riemannian manifold and $p \in M$. Let $\epsilon > 0$ be small enough such that

$$\exp_n: B_{\epsilon}(0_p) \to B_{\epsilon}(p) \subset M$$

is a diffeomorphism. Let $\gamma:[0,1]\to B_{\epsilon}(p)\setminus\{p\}$ be any curve.

Show that there exist a curve $v:[0,1]\to T_pM$, ||v(s)||=1 for all $s\in[0,1]$, and a non-negative function $r:[0,1]\to\mathbb{R}_{\geq 0}$, such that

$$\gamma(s) = \exp_p(r(s)v(s))$$

2.2. (\star) Geodesic normal coordinates

Let (M,g) be a Riemannian manifold and $p \in M$. Let $\epsilon > 0$ such that

$$\exp_p: B_{\epsilon}(0_p) \to B_{\epsilon}(p) \subset M$$

is a diffeomorphism. Let v_1, \ldots, v_n be an orthonormal basis of T_pM . Then a local coordinate chart of M is given by $\varphi = (x_1, \ldots, x_n) : B_{\epsilon}(p) \to V := \{w \in \mathbb{R}^n \mid ||w|| < \epsilon\}$ via

$$\varphi^{-1}(x_1,\ldots,x_n) = \exp_p(\sum_{i=1}^n x_i v_i).$$

The coordinate functions x_1, \ldots, x_n of φ are called *geodesic normal coordinates*.

(a) Let g_{ij} be the first fundamental form in terms of the above coordinate system φ . Show that at $p \in M$:

$$g_{ij}(p) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

(b) Let $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ be arbitrary vector, and $c(t) = \varphi^{-1}(tw)$. Explain why c(t) is a geodesic and deduce from this fact that

$$\sum_{i,j} w_i w_j \Gamma_{ij}^k(c(t)) = 0,$$

for all $1 \le k \le n$.

(c) Derive from (b) that all Christoffel symbols Γ_{ij}^k of the chart φ vanish at the point $p \in M$.

2.3. Let (M,g) be a Riemannian manifold and $v_1, \ldots, v_n \in T_pM$ be an orthonormal basis. As it follows from problem 2.2, for the geodesic normal coordinates $\varphi : B_{\epsilon}(p) \to B_{\epsilon}(0) \subset \mathbb{R}^n$,

$$\varphi^{-1}(x_1,\ldots,x_n) = \exp_p(\sum x_i v_i)$$

we have $\frac{\partial}{\partial x_i}|_p = v_i$ and $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = 0$.

Define an orthonormal frame $E_1, \ldots, E_n : B_{\epsilon}(p) \to TM$ (i.e. an n-tuple of vector fields composing an orthonormal basis of T_qM in every point $q \in B_{\epsilon}(p)$) by Gram-Schmidt orthonormalisation, i.e.,

$$F_{1}(q) := \frac{\partial}{\partial x_{1}}\Big|_{q}, \qquad E_{1}(q) := \frac{1}{\|F_{1}(q)\|}F_{1}(q),$$

$$\dots$$

$$F_{k}(q) := \frac{\partial}{\partial x_{k}}\Big|_{q} - \sum_{j=1}^{k-1} \left\langle \frac{\partial}{\partial x_{k}}\Big|_{q}, E_{j}(q) \right\rangle E_{j}(q), \qquad E_{k}(q) := \frac{1}{\|F_{k}(q)\|}F_{k}(q),$$

$$\dots$$

As you might have shown in problem 2.2, $E_i(p) = v_i$ and $E_1(q), \ldots, E_n(q)$ are orthonormal in T_qM for all $q \in B_{\epsilon}(p)$. Show that

$$(\nabla_{E_i} E_i)(p) = 0$$

for all $i, j \in \{1, ..., n\}$.

Hint: Prove first by induction over k that

$$\begin{pmatrix} \nabla_{\frac{\partial}{\partial x_i}} F_k \end{pmatrix} (p) = 0,
\nabla_{\frac{\partial}{\partial x_i}} \langle F_k, F_k \rangle^{-1/2} (p) = 0,
\begin{pmatrix} \nabla_{\frac{\partial}{\partial x_i}} E_k \end{pmatrix} (p) = 0,$$

for all $i \in \{1, ..., n\}$.