Riemannian Geometry IV, Homework 2 (Week 13)

Due date for starred problems: Wednesday, February 15.
2.1. Let (M, g) be a Riemannian manifold and $p \in M$. Let $\epsilon>0$ be small enough such that

$$
\exp _{p}: B_{\epsilon}\left(0_{p}\right) \rightarrow B_{\epsilon}(p) \subset M
$$

is a diffeomorphism. Let $\gamma:[0,1] \rightarrow B_{\epsilon}(p) \backslash\{p\}$ be any curve.
Show that there exist a curve $v:[0,1] \rightarrow T_{p} M,\|v(s)\|=1$ for all $s \in[0,1]$, and a non-negative function $r:[0,1] \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\gamma(s)=\exp _{p}(r(s) v(s))
$$

2.2. (\star) Geodesic normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\epsilon>0$ such that

$$
\exp _{p}: B_{\epsilon}\left(0_{p}\right) \rightarrow B_{\epsilon}(p) \subset M
$$

is a diffeomorphism. Let v_{1}, \ldots, v_{n} be an orthonormal basis of $T_{p} M$. Then a local coordinate chart of M is given by $\varphi=\left(x_{1}, \ldots, x_{n}\right): B_{\epsilon}(p) \rightarrow V:=\left\{w \in \mathbb{R}^{n} \mid\|w\|<\epsilon\right\}$ via

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum_{i=1}^{n} x_{i} v_{i}\right)
$$

The coordinate functions x_{1}, \ldots, x_{n} of φ are called geodesic normal coordinates.
(a) Let $g_{i j}$ be the first fundamental form in terms of the above coordinate system φ. Show that at $p \in M$:

$$
g_{i j}(p)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

(b) Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ be arbitrary vector, and $c(t)=\varphi^{-1}(t w)$. Explain why $c(t)$ is a geodesic and deduce from this fact that

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0
$$

for all $1 \leq k \leq n$.
(c) Derive from (b) that all Christoffel symbols $\Gamma_{i j}^{k}$ of the chart φ vanish at the point $p \in M$.
2.3. Let (M, g) be a Riemannian manifold and $v_{1}, \ldots, v_{n} \in T_{p} M$ be an orthonormal basis. As it follows from problem 2.2, for the geodesic normal coordinates $\varphi: B_{\epsilon}(p) \rightarrow B_{\epsilon}(0) \subset \mathbb{R}^{n}$,

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum x_{i} v_{i}\right)
$$

we have $\left.\frac{\partial}{\partial x_{i}}\right|_{p}=v_{i}$ and $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=0$.
Define an orthonormal frame $E_{1}, \ldots, E_{n}: B_{\epsilon}(p) \rightarrow T M$ (i.e. an n-tuple of vector fields composing an orthonormal basis of $T_{q} M$ in every point $\left.q \in B_{\epsilon}(p)\right)$ by Gram-Schmidt orthonormalisation, i.e.,

$$
\begin{aligned}
F_{1}(q) & :=\left.\frac{\partial}{\partial x_{1}}\right|_{q}, \quad E_{1}(q):=\frac{1}{\left\|F_{1}(q)\right\|} F_{1}(q) \\
& \cdots \\
F_{k}(q) & :=\left.\frac{\partial}{\partial x_{k}}\right|_{q}-\sum_{j=1}^{k-1}\left\langle\left.\frac{\partial}{\partial x_{k}}\right|_{q}, E_{j}(q)\right\rangle E_{j}(q), \quad E_{k}(q):=\frac{1}{\left\|F_{k}(q)\right\|} F_{k}(q),
\end{aligned}
$$

As you might have shown in problem 2.2, $E_{i}(p)=v_{i}$ and $E_{1}(q), \ldots, E_{n}(q)$ are orthonormal in $T_{q} M$ for all $q \in B_{\epsilon}(p)$. Show that

$$
\left(\nabla_{E_{i}} E_{j}\right)(p)=0
$$

for all $i, j \in\{1, \ldots, n\}$.
Hint: Prove first by induction over k that

$$
\begin{aligned}
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k}\right)(p) & =0 \\
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k}, F_{k}\right\rangle^{-1 / 2}(p) & =0, \\
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k}\right)(p) & =0,
\end{aligned}
$$

for all $i \in\{1, \ldots, n\}$.

