Riemannian Geometry IV, Homework 3 (Week 14)

Due date for starred problems: Wednesday, February 15.

3.1. (*) Consider the upper half-plane $M = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ with the metric

$$(g_{ij}) = \begin{pmatrix} 1 & 0\\ 0 & \frac{1}{y} \end{pmatrix}$$

(a) Show that all the Christoffel symbols are zero except $\Gamma_{22}^2 = -\frac{1}{2y}$.

(b) Show that the vertical segment x = 0, $\varepsilon \le y \le 1$ with $0 < \varepsilon < 1$ is a geodesic curve when parametrized proportionally to arc length.

(c) Show that the length of the segment x = 0, $\varepsilon \le y \le 1$ with $0 < \varepsilon < 1$ tends to 2 as ε tends to zero.

(d) Show that (M, g) is not geodesically complete.

- **3.2.** Let (M, g) be a Riemannian manifold and R its curvature tensor. Let $f, g, h \in C^{\infty}(M)$, and X, Y, Z, W be vector fields on M. Show that
 - (a) R(fX,Y)Z = fR(X,Y)Z;
 - (b) R(X, fY)Z = fR(X, Y)Z;
 - (c) $\langle R(X,Y)fZ,W\rangle = \langle fR(X,Y)Z,W\rangle;$
 - (d) R(fX, gY)hZ = fghR(X, Y)Z.
- **3.3.** Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the *First Bianchi Identity*:

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity.