Riemannian Geometry IV, Homework 3 (Week 14)

Due date for starred problems: Wednesday, February 15.
3.1. (\star) Consider the upper half-plane $M=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ with the metric

$$
\left(g_{i j}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{y}
\end{array}\right)
$$

(a) Show that all the Christoffel symbols are zero except $\Gamma_{22}^{2}=-\frac{1}{2 y}$.
(b) Show that the vertical segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ is a geodesic curve when parametrized proportionally to arc length.
(c) Show that the length of the segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ tends to 2 as ε tends to zero.
(d) Show that (M, g) is not geodesically complete.
3.2. Let (M, g) be a Riemannian manifold and R its curvature tensor. Let $f, g, h \in C^{\infty}(M)$, and X, Y, Z, W be vector fields on M. Show that
(a) $R(f X, Y) Z=f R(X, Y) Z$;
(b) $R(X, f Y) Z=f R(X, Y) Z$;
(c) $\langle R(X, Y) f Z, W\rangle=\langle f R(X, Y) Z, W\rangle$;
(d) $R(f X, g Y) h Z=f g h R(X, Y) Z$.
3.3. Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi Identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity.

