Riemannian Geometry IV, Homework 4 (Week 15)

Due date for starred problems: Wednesday, March 14.

4.1. Compute (sectional) curvature of 2-dimensional sphere of radius r in \mathbb{R}^{3}.
4.2. (\star) Let (M, g) be a Riemannian manifold. Show that M is of constant sectional curvature K_{0} if and only if

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=K_{0}\left(\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle-\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle\right)
$$

for any $p \in M$ and $v_{1}, v_{2}, v_{3}, v_{4} \in T_{p} M$.
4.3. (a) Show that sectional curvature $K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)$ and $K\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$ of 3-dimensional real hyperbolic space \mathbb{H}^{3} (in upper half-space model) is equal to -1 .
(b) Use (a) and linearity of Riemann curvature tensor to show that 3-dimensional real hyperbolic space \mathbb{H}^{3} has constant sectional curvature.

