Riemannian Geometry IV, Homework 4 (Week 15)

Due date for starred problems: Wednesday, March 14.

- **4.1.** Compute (sectional) curvature of 2-dimensional sphere of radius r in \mathbb{R}^3 .
- **4.2.** (\star) Let (M, g) be a Riemannian manifold. Show that M is of constant sectional curvature K_0 if and only if

$$\langle R(v_1, v_2)v_3, v_4 \rangle = K_0(\langle v_1, v_4 \rangle \langle v_2, v_3 \rangle - \langle v_1, v_3 \rangle \langle v_2, v_4 \rangle)$$

for any $p \in M$ and $v_1, v_2, v_3, v_4 \in T_p M$.

4.3. (a) Show that sectional curvature $K(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_3})$ and $K(\frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})$ of 3-dimensional real hyperbolic space \mathbb{H}^3 (in upper half-space model) is equal to -1.

(b) Use (a) and linearity of Riemann curvature tensor to show that 3-dimensional real hyperbolic space \mathbb{H}^3 has constant sectional curvature.