Riemannian Geometry IV, Homework 5 (Week 16)

Due date for starred problems: Wednesday, March 14.

5.1. Second Variation Formula of Energy

Let $F:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ be a proper variation of a geodesic $c:[a, b] \rightarrow M$, and let X be its variational vector field. Let $E:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

Show that

$$
E^{\prime \prime}(0)=\int_{a}^{b}\left\|\frac{D}{d t} X\right\|^{2}-\left\langle R\left(X, c^{\prime}\right) c^{\prime}, X\right\rangle d t
$$

5.2. (\star) A Riemannian manifold (M, g) is called Einstein manifold if there exists $c \in \mathbb{R}$ such that

$$
\operatorname{Ric} c_{p}(v, w)=c\langle v, w\rangle
$$

for every $p \in M, v, w \in T_{p} M$.
(a) Show that (M, g) is Einstein manifold if and only if there exists $c \in \mathbb{R}$ such that

$$
\operatorname{Ric}(v)=c
$$

for every unit tangent vector v.
(b) Show that if (M, g) is of constant sectional curvature then (M, g) is Einstein manifold.
5.3. Let (M, g) be a Riemannian manifold, $\mathcal{X}(M)$ be the vector space of smooth vector fields on M, and ∇ be the Levi-Civita connection. Recall that a map

$$
A: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \rightarrow C^{\infty}(M) \text { or } \mathcal{X}(M)
$$

is a tensor if it is linear in each argument, i.e.,

$$
A\left(X_{1}, \cdots, f X_{i}+g Y_{i}, \cdots, X_{r}\right)=f A\left(X_{1}, \cdots, X_{i}, \cdots, X_{r}\right)+g A\left(X_{1}, \cdots, Y_{i}, \cdots, X_{r}\right),
$$

for all $X, Y \in \mathcal{X}(M)$ and $f, g \in C^{\infty}(M)$.
(a) Let

$$
T: \underbrace{\mathcal{X}(M) \times \cdots \times \mathcal{X}(M)}_{r \text { factors }} \rightarrow C^{\infty}(M)
$$

be a tensor. The covariant derivative of T is a map

$$
\nabla T: \underbrace{\mathcal{X}(M) \times \cdots \times \mathcal{X}(M)}_{r+1 \text { factors }} \rightarrow C^{\infty}(M),
$$

defined by

$$
\nabla T\left(X_{1}, \ldots, X_{r}, Y\right)=Y\left(T\left(X_{1}, \ldots, X_{r}\right)\right)-\sum_{j=1}^{r} T\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right) .
$$

Show that ∇T is a tensor.

Tensor T is called parallel if $\nabla T=0$.
(b) Assume that $T_{1}, T_{2}: \mathcal{X} \times \mathcal{X} \rightarrow C^{\infty}(M)$ are parallel tensors. Show that the tensor $T: \mathcal{X} \times \mathcal{X} \times \mathcal{X} \times \mathcal{X} \rightarrow C^{\infty}(M)$, defined as

$$
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right),
$$

is also parallel.
(c) Use (b) to show that $\nabla R^{\prime}=0$ for the tensor

$$
R^{\prime}(X, Y, Z, W)=\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle
$$

(d) Use (c) and Problem 4.2 to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$
R(X, Y, Z, W):=\langle R(X, Y) Z, W\rangle
$$

