Riemannian Geometry IV, Homework 7 (Week 18)

Due date for starred problems: Wednesday, March 14.

7.1. (\star) Let M be a Riemannian manifold of non-positive sectional curvature.
(a) Let $c:[a, b] \rightarrow M$ be a differentiable curve and J be a Jacobi field along c. Let $f(t)=\|J(t)\|^{2}$. Show that $f^{\prime \prime}(t) \geq 0$, i.e., f is a convex function.
(b) Derive from (a) that M does not admit conjugate points.
7.2. Jacobi fields and conjugate points on locally symmetric spaces

A Riemannian manifold (M, g) is called a locally symmetric space if $\nabla R=0$ (see Problem 5.3). Let (M, g) be an n-dimensional locally symmetric space and $c:[0, \infty) \rightarrow M$ be a geodesic with $p=c(0)$ and $v=c^{\prime}(0) \in T_{p} M$. Prove the following facts:
(a) Let X, Y, Z be parallel vector fields along c. Show that $R(X, Y) Z$ is also parallel.
(b) Let $K_{v} \in \operatorname{Hom}\left(T_{p} M, T_{p} M\right)$ be the curvature operator, defined by

$$
K_{v}(w)=R(w, v) v .
$$

Show that K_{v} is self-adjoint, i.e.,

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle
$$

for every pair of vectors $w_{1}, w_{2} \in T_{p} M$.
(c) Choose an orthonormal basis $w_{1}, \ldots, w_{n} \in T_{p} M$ that diagonalizes K_{v}, i.e.,

$$
K_{v}\left(w_{i}\right)=\lambda_{i} w_{i} .
$$

(such a basis exists since K_{v} is self-adjoint). Let W_{1}, \ldots, W_{n} be the parallel vector fields along c with $W_{i}(0)=w_{i}$. Show that, for all $t \in[0, \infty)$,

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t)
$$

(d) Let $J(t)=\sum_{i} J_{i}(t) W_{i}(t)$ be a Jacobi field along c. Show that Jacobi's equation translates into

$$
J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, \quad \text { for } i=1, \ldots, n
$$

(e) Show that the conjugate points of p along c are given by $c\left(\pi k / \sqrt{\lambda_{i}}\right)$, where k is any positive integer and λ_{i} is a positive eigenvalue of K_{v}.

