Riemannian Geometry IV, Homework 1 (Week 12)

Due date for starred problems: Tuesday, February 12.

1.1. Lie bracket of vector fields

Let $X, Y \in \Gamma(T M), X=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}, Y=\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}$. Compute the Lie bracket

$$
[X, Y]=X Y-Y X
$$

in coordinates and show that it is a vector field on M.

Solution: Applying $[X, Y]$ to a function f, we obtain

$$
\begin{aligned}
& {[X, Y] f=X Y f-Y X f=X\left(\sum_{j=1}^{n} b_{j} \frac{\partial f}{\partial x_{j}}\right)-Y\left(\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}\right)=} \\
& =\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{j} \frac{\partial f}{\partial x_{j}}\right)-\sum_{j=1}^{n} b_{j} \sum_{i=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i} \frac{\partial f}{\partial x_{i}}\right)= \\
& =\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n}\left(\frac{\partial b_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}+b_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)-\sum_{j=1}^{n} b_{j} \sum_{i=1}^{n}\left(\frac{\partial a_{i}}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}+a_{i} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)= \\
& =\sum_{i, j=1}^{n}\left(a_{i} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}+a_{i} b_{j} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)-\sum_{i, j=1}^{n}\left(b_{j} \frac{\partial a_{i}}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}+b_{j} a_{i} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)= \\
& =\sum_{i, j=1}^{n} a_{i} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}-\sum_{i, j=1}^{n} b_{j} \frac{\partial a_{i}}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(a_{j} \frac{\partial b_{i}}{\partial x_{j}}-b_{j} \frac{\partial a_{i}}{\partial x_{j}}\right)\right) \frac{\partial f}{\partial x_{i}},
\end{aligned}
$$

which shows, in particular, that $[X, Y]$ is a vector field since it is a linear combination of $\left\{\frac{\partial}{\partial x_{i}}\right\}$.

1.2. The equation of geodesic

Let $c(t)$ be a curve on M, and $X \in \Gamma\left(c^{-1} T M\right), X(t)=\sum_{i=1}^{n} a_{i}(t) \frac{\partial}{\partial x_{i}}$. Recall that covariant derivative ∇_{t} of X along $c(t)$ is given by

$$
\nabla_{t} X=\sum_{i=1}^{n}\left(a_{i}^{\prime}(t) \frac{\partial}{\partial x_{i}}+a_{i}(t) \nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{i}}\right)
$$

Use the formula above and the definitions of connection and Christoffel symbols to show that $c(t)$ is geodesic (i.e., $\nabla_{t} c^{\prime}(t)=0$) if and only if for any $k=1, \ldots, n$

$$
c_{k}^{\prime \prime}(t)+\sum_{i, j=1}^{n} c_{i}^{\prime}(t) c_{j}^{\prime}(t) \Gamma_{i j}^{k}=0
$$

Solution: By the definition of covariant derivative,

$$
\nabla_{t} c^{\prime}(t)=\sum_{i} c_{i}^{\prime \prime}(t) \frac{\partial}{\partial x_{i}}+\sum_{i} c_{i}^{\prime}(t) \nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{i}}
$$

Therefore, if $c(t)$ is a geodesic, we have

$$
\begin{aligned}
& 0=\nabla_{t} c^{\prime}(t)=\sum_{i} c_{i}^{\prime \prime}(t) \frac{\partial}{\partial x_{i}}+\sum_{i} c_{i}^{\prime}(t) \nabla_{\sum_{j} c_{j}^{\prime}(t) \frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{i}}= \\
& =\sum_{i} c_{i}^{\prime \prime}(t) \frac{\partial}{\partial x_{i}}+\sum_{i} c_{i}^{\prime}(t) \sum_{j} c_{j}^{\prime}(t) \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{i}}=\sum_{i} c_{i}^{\prime \prime}(t) \frac{\partial}{\partial x_{i}}+\sum_{i} c_{i}^{\prime}(t) \sum_{j} c_{j}^{\prime}(t) \sum_{k} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}= \\
& =\sum_{k} c_{k}^{\prime \prime}(t) \frac{\partial}{\partial x_{k}}+\sum_{k}\left(\sum_{i, j} c_{i}^{\prime}(t) c_{j}^{\prime}(t) \Gamma_{i j}^{k}\right) \frac{\partial}{\partial x_{k}}=\sum_{k}\left(c_{k}^{\prime \prime}(t)+\sum_{i, j} c_{i}^{\prime}(t) c_{j}^{\prime}(t) \Gamma_{i j}^{k}\right) \frac{\partial}{\partial x_{k}}
\end{aligned}
$$

The equality shows that every component of the vector above is zero.

1.3. (\star) Rescaling Lemma

Let $c:[0, a] \rightarrow M$ be a geodesic, and $k>0$. Define a curve γ by

$$
\gamma:[0, a / k] \rightarrow M, \quad \gamma(t)=c(k t)
$$

Show that γ is geodesic with $\gamma^{\prime}(t)=k c^{\prime}(k t)$.

Solution: Proof is sraightforward: all the entries of the corresponding differential equation for $c(t)$ are multiplied by k^{2}.
1.4. Let (M, g) be a Riemannian manifold and $p \in M$. Let $\epsilon>0$ be small enough such that

$$
\exp _{p}: B_{\epsilon}\left(0_{p}\right) \rightarrow B_{\epsilon}(p) \subset M
$$

is a diffeomorphism. Let $\gamma:[0,1] \rightarrow B_{\epsilon}(p) \backslash\{p\}$ be any curve.
Show that there exist a curve $v:[0,1] \rightarrow M_{p},\|v(s)\|=1$ for all $s \in[0,1]$, and a non-negative function $r:[0,1] \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\gamma(s)=\exp _{p}(r(s) v(s))
$$

Solution: Since $\exp _{p}: B_{\epsilon}\left(0_{p}\right) \rightarrow B_{\epsilon}(p)$ is a diffeomorphism, for every $s \in[0,1]$ the point $\gamma(s)$ can be represented as $\exp _{p}(w(s))$ for some $w(s) \in B_{\epsilon}\left(0_{p}\right)$. Define $r(s)=\|w(s)\|, v(s)=w(s) / r(s)$.
1.5. Let (M, g) be a Riemannian manifold and R its curvature tensor. Let $f, g, h \in C^{\infty}(M)$, and X, Y, Z, W be vector fields on M. Show that
(a) $R(f X, Y) Z=f R(X, Y) Z$;
(b) $R(X, f Y) Z=f R(X, Y) Z$;
(c) $\langle R(X, Y) f Z, W\rangle=\langle f R(X, Y) Z, W\rangle$;
(d) $R(f X, g Y) h Z=f g h R(X, Y) Z$.

Solution:

(a) Note that $[f X, Y]=f[X, Y]-(Y f) X$. We have

$$
\begin{aligned}
& R(f X, Y) Z=-\left(\nabla_{f X} \nabla_{Y} Z-\nabla_{Y} \nabla_{f X} Z\right)+\nabla_{[f X, Y]} Z= \\
& \quad=-f \nabla_{X} \nabla_{Y} Z+\nabla_{Y}\left(f \nabla_{X} Z\right)+\nabla_{f[X, Y]-(Y f) X} Z= \\
& =-f \nabla_{X} \nabla_{Y} Z+(Y f) \nabla_{X} Z+f \nabla_{Y} \nabla_{X} Z+f \nabla_{[X, Y]} Z-(Y f) \nabla_{X} Z= \\
& \\
& \quad=-f\left(\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z+\nabla_{[X, Y]} Z\right)=f R(X, Y) Z .
\end{aligned}
$$

(b) Using the symmetry $R(X, Y) Z=-R(Y, X) Z$, we conclude with (a) that

$$
R(X, f Y) Z=-R(f Y, X) Z=-f R(Y, X) Z=f R(X, Y) Z .
$$

(c) Using the symmetry $\langle R(X, Y) Z, W\rangle=\langle R(Z, W) X, Y\rangle$ twice, we conclude with (a) that

$$
\begin{aligned}
\langle R(X, Y) f Z, W\rangle=\langle R(f Z, W) X, Y\rangle & =\langle f R(Z, W) X, Y\rangle= \\
& =f\langle R(Z, W) X, Y\rangle=f\langle R(X, Y) Z, W\rangle=\langle f R(X, Y) Z, W\rangle .
\end{aligned}
$$

(d) Since (c) holds for all vector fields W, we conclude that

$$
R(X, Y) f Z=f R(X, Y) Z
$$

Using this together with (a) and (b), we obtain

$$
R(f X, g Y) h Z=f g h R(X, Y) Z
$$

1.6. First Bianchi Identity

Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi Identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0
$$

Solution: We have

$$
\begin{aligned}
& -(R(X, Y) Z+R(Y, Z) X+R(Z, X) Y)=\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z\right)+ \\
& \quad+\left(\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{Y} X-\nabla_{[Y, Z]} X\right)+\left(\nabla_{Z} \nabla_{X} Y-\nabla_{X} \nabla_{Z} Y-\nabla_{[Z, X]} Y\right)= \\
& \left.\left.=\nabla_{X}\left(\nabla_{Y} Z-\nabla_{Z} Y\right)+\nabla_{Y}\left(\nabla_{Z} X-\nabla_{X} Z\right)+\nabla_{Z}\left(\nabla_{X} Y-\nabla_{Y} X\right)-\left(\nabla_{[X, Y]} Z\right)+\nabla_{[Y, Z]} X\right)+\nabla_{[Z, X]} Y\right)= \\
& \left.\left.=\nabla_{X}[Y, Z]+\nabla_{Y}[Z, X]+\nabla_{Z}[X, Y]-\left(\nabla_{[X, Y]} Z\right)+\nabla_{[Y, Z]} X\right)+\nabla_{[Z, X]} Y\right)= \\
& =\left(\nabla_{X}[Y, Z]-\nabla_{[Y, Z]} X\right)+\left(\nabla_{Y}[Z, X]-\nabla_{[Z, X]} Y\right)+\left(\nabla_{Z}[X, Y]-\nabla_{[X, Y]} Z\right)= \\
& \quad=-([[Y, Z], X]+[[Z, X], Y]+[[X, Y], Z])=0 .
\end{aligned}
$$

1.7. Constant sectional curvature of real hyperbolic n-space

Let \mathbb{H}^{n} be the upper halfspace model of the real hyperbolic n-space

$$
\mathbb{H}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}
$$

Recall that the hyperbolic metric \tilde{g} on \mathbb{H}^{n} is given by

$$
\tilde{g}_{i i}=\frac{1}{x_{n}^{2}}, \quad \tilde{g}_{i j}=0 \quad \text { for } \quad i \neq j
$$

Consider first $n=3$.
(a) Compute the Christoffel symbols of $\left(\mathbb{H}^{3}, \tilde{g}\right)$.
(b) Show that sectional curvatures $K\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right), K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right), K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right)$ all are equal to -1 at every point of \mathbb{H}^{3}.
(c) Use (b) and the linearity of Riemann curvature tensor to show that real hyperbolic 3space has constant sectional curvature.

Consider now the general case.
(d) Compute the Christoffel symbols of $\left(\mathbb{H}^{n}, \tilde{g}\right)$. (The computations are very similar to (a)).
(e) Show that for every $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{H}^{n}$ and every $i, j \in[1, \ldots, n-1]$ the submanifold

$$
N=\left\{x \in \mathbb{H}^{n} \mid x_{k}=a_{k} \quad \text { for all } \quad k \neq i, j, n\right\}
$$

with the metric induced from \mathbb{H}^{n} is a real hyperbolic 3 -space.
(f) Show that $K\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=-1$ for all pairs (i, j) at every point of \mathbb{H}^{n}.
(g) Use (f) and the linearity of Riemann curvature tensor to show that real hyperbolic n-space has constant sectional curvature.

Solution:

(a) We use the formula

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{r=1}^{n} g^{k r}\left(g_{i r, j}+g_{j r, i}-g_{i j, r}\right)
$$

The only non-zero $g_{i j, k}$ are $g_{i i, 3}=-2 / x_{3}^{3}$. Thus, the only non-zero Christoffel symbols are

$$
\Gamma_{11}^{3}=\Gamma_{22}^{3}=\frac{1}{x_{3}}, \quad \Gamma_{33}^{3}=\Gamma_{13}^{1}=\Gamma_{31}^{1}=\Gamma_{23}^{2}=\Gamma_{32}^{2}=-\frac{1}{x_{3}},
$$

the remaining ones are zero. Using this, we compute that

$$
\begin{gathered}
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}=\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}}=\Gamma_{11}^{3} \frac{\partial}{\partial x_{3}}=\Gamma_{22}^{3} \frac{\partial}{\partial x_{3}}=\frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}, \quad \nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{3}}=\Gamma_{33}^{3} \frac{\partial}{\partial x_{3}}=-\frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}, \\
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{2}}=\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{1}}=0, \quad \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{3}}=\nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{1}}=-\frac{1}{x_{3}} \frac{\partial}{\partial x_{1}}, \quad \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{3}}=\nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{2}}=-\frac{1}{x_{3}} \frac{\partial}{\partial x_{2}} .
\end{gathered}
$$

(b) First, we compute $K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)$.

$$
\begin{aligned}
& K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)=\frac{\left\langle R\left(\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right) \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle}{\left\|\frac{\partial}{\partial x_{1}}\right\|^{2}\left\|\frac{\partial}{\partial x_{3}}\right\|^{2}-\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right\rangle^{2}}= \\
& =\frac{1}{\left\|\frac{\partial}{\partial x_{1}}\right\|^{2}\left\|\frac{\partial}{\partial x_{3}}\right\|^{2}}\left\langle\nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{3}}-\nabla_{\frac{\partial}{\partial x_{3}}} \nabla \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{3}}-\nabla\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right] \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
& \quad=x_{3}^{2} x_{3}^{2}\left\langle-\nabla_{\frac{\partial}{\partial x_{1}}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}+\nabla_{\frac{\partial}{\partial x_{3}}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
& =x_{3}^{4}\left\langle-\frac{1}{x_{3}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{3}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{1}}+\frac{1}{x_{3}} \nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
& \quad=x_{3}^{4}\left\langle\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}-\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}+-\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle=-x_{3}^{4} \frac{1}{x_{3}^{2}} \frac{1}{x_{3}^{2}}=-1
\end{aligned}
$$

Computations of $K\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$ and $K\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right)$ are similar.
Remark. In fact, the plane spanned by vectors $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}$ is tangent to vertical hyperbolic plane $x_{2}=c$, so the corresponding sectional curvature is exactly the curvature of hyperbolic plane which is equal to -1 . Thus, we could avoid all the computations. The same holds for the plane spanned by vectors $\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}$. The plane spanned by vectors $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}$ is tangent to a Euclidean hemisphere $\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}+x_{3}^{2}=R^{2}$ which is also a hyperbolic plane in \mathbb{H}^{3}.
(c) By computations similar to ones done in (b), we obtain that

$$
\left\langle R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right) \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle=\left\langle R\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right) \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{2}}\right\rangle=\left\langle R\left(\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right) \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\rangle=0
$$

Now we see that for all vectors $\left\{v_{1}, v_{2}, v_{2}, v_{4}\right\} \subset\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\}$ we have an equality

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=-\left(\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle-\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle\right)
$$

By linearity, the equality above holds for any quadruple of tangent vectors. According to Problem 2.1, this implies that sectional curvature is constant and equal -1 .
(d) Exactly the same as (a).
(e) The tangent space in every point of N is spanned by vectors $\left\{\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{n}}\right\}$. The restriction of the metric \tilde{g} to this plane gives 3 -dimensional symmetric bilinear form coinciding with one for \mathbb{H}^{3}.
(f) This follows from (e).
(g) Identical to (c).

1.8. Horosphere in hyperbolic 3 -space

Consider a horosphere

$$
M=\left\{x \in \mathbb{H}^{3} \mid x_{1}^{2}+x_{2}^{2}+\left(x_{3}-1\right)^{2}=1\right\}
$$

in real hyperbolic 3 -space with metric g induced from \mathbb{H}^{3}.
(a) Parametrize M using spherical coordinates, and compute the induced metric.
(b) Compute the Christoffel symbols of (M, g).
(c) Compute the curvature tensor of (M, g). More precisely, prove that the curvature tensor is identically zero.

Solution: (a) Parametrize the horosphere by (φ, ϑ), where

$$
\left(x_{1}, x_{2}, x_{3}\right)=(\cos \varphi \sin \vartheta, \sin \varphi \sin \vartheta, 1+\cos \vartheta)
$$

Then the metric $g_{i j}$ can be written as

$$
g_{11}=\frac{\sin ^{2} \vartheta}{(1+\cos \vartheta)^{2}}, g_{22}=\frac{1}{(1+\cos \vartheta)^{2}}, g_{12}=g_{21}=0 .
$$

(b) Computation of Christoffel symbols (as in Problem 1.7) gives

$$
\Gamma_{11}^{2}=-\sin \vartheta, \quad \Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{1}{\sin \vartheta}, \quad \Gamma_{22}^{2}=\frac{\sin \vartheta}{1+\cos \vartheta},
$$

while all the remaining ones are zero.
(c) Using (b), we obtain

$$
\nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}=-\sin \vartheta \frac{\partial}{\partial \vartheta}, \quad \nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \vartheta}=\nabla_{\frac{\partial}{\partial \vartheta}} \frac{\partial}{\partial \varphi}=\frac{1}{\sin \vartheta} \frac{\partial}{\partial \varphi}, \quad \nabla_{\frac{\partial}{\partial \vartheta}} \frac{\partial}{\partial \vartheta}=\frac{\sin \vartheta}{1+\cos \vartheta} \frac{\partial}{\partial \vartheta}
$$

We need to compute $\left\langle R\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right) \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right\rangle$ as a unique (up to permutation of indices) non-zero component of the curvature tensor.

$$
R\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right) \frac{\partial}{\partial \varphi}=\nabla_{\frac{\partial}{\partial \vartheta}} \nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}-\nabla_{\frac{\partial}{\partial \varphi}} \nabla_{\frac{\partial}{\partial \vartheta}} \frac{\partial}{\partial \varphi}+\nabla_{\left[\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right]} \frac{\partial}{\partial \varphi}
$$

Since the commutator of $\frac{\partial}{\partial \varphi}$ and $\frac{\partial}{\partial \vartheta}$ is zero, we obtain

$$
\begin{aligned}
R\left(\frac{\partial}{\partial \varphi}\right. & \left., \frac{\partial}{\partial \vartheta}\right) \frac{\partial}{\partial \varphi}=\nabla_{\frac{\partial}{\partial \vartheta}} \nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}-\nabla_{\frac{\partial}{\partial \varphi}} \nabla_{\frac{\partial}{\partial \vartheta}} \frac{\partial}{\partial \varphi}= \\
& =\nabla_{\frac{\partial}{\partial \vartheta}}(-\sin \vartheta) \frac{\partial}{\partial \vartheta}-\nabla_{\frac{\partial}{\partial \varphi}} \frac{1}{\sin \vartheta} \frac{\partial}{\partial \varphi}=-\cos \vartheta \frac{\partial}{\partial \vartheta}-\sin \vartheta \nabla_{\frac{\partial}{\partial \vartheta}} \frac{\partial}{\partial \vartheta}-\frac{1}{\sin \vartheta} \nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}= \\
& =-\cos \vartheta \frac{\partial}{\partial \vartheta}-\sin \vartheta \frac{\sin \vartheta}{1+\cos \vartheta} \frac{\partial}{\partial \vartheta}-\frac{1}{\sin \vartheta}(-\sin \vartheta) \frac{\partial}{\partial \vartheta}=\left(-\cos \vartheta-\frac{\sin ^{2} \vartheta}{1+\cos \vartheta}+1\right) \frac{\partial}{\partial \vartheta}=0
\end{aligned}
$$

