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Riemannian Geometry IV, Homework 1 (Week 12)

Due date for starred problems: Tuesday, February 12.

1.1. Lie bracket of vector fields

Let X, Y ∈ Γ(TM), X =
n∑
i=1

ai
∂
∂xi

, Y =
n∑
j=1

bj
∂
∂xj

. Compute the Lie bracket

[X, Y ] = XY − Y X

in coordinates and show that it is a vector field on M .

Solution: Applying [X,Y ] to a function f , we obtain

[X,Y ]f = XY f − Y Xf = X

 n∑
j=1

bj
∂f

∂xj

− Y ( n∑
i=1

ai
∂f

∂xi

)
=

=
n∑
i=1

ai

n∑
j=1

∂

∂xi

(
bj
∂f

∂xj

)
−

n∑
j=1

bj

n∑
i=1

∂

∂xj

(
ai
∂f

∂xi

)
=

=
n∑
i=1

ai

n∑
j=1

(
∂bj
∂xi

∂f

∂xj
+ bj

∂2f

∂xi∂xj

)
−

n∑
j=1

bj

n∑
i=1

(
∂ai
∂xj

∂f

∂xi
+ ai

∂2f

∂xj∂xi

)
=

=
n∑

i,j=1

(
ai
∂bj
∂xi

∂f

∂xj
+ aibj

∂2f

∂xj∂xi

)
−

n∑
i,j=1

(
bj
∂ai
∂xj

∂f

∂xi
+ bjai

∂2f

∂xi∂xj

)
=

=
n∑

i,j=1

ai
∂bj
∂xi

∂f

∂xj
−

n∑
i,j=1

bj
∂ai
∂xj

∂f

∂xi
=

n∑
i=1

 n∑
j=1

(
aj
∂bi
∂xj
− bj

∂ai
∂xj

) ∂f

∂xi
,

which shows, in particular, that [X,Y ] is a vector field since it is a linear combination of
{

∂
∂xi

}
.

1.2. The equation of geodesic

Let c(t) be a curve on M , and X ∈ Γ(c−1TM), X(t) =
n∑
i=1

ai(t)
∂
∂xi

. Recall that covariant

derivative ∇t of X along c(t) is given by

∇tX =
n∑
i=1

(
a′i(t)

∂

∂xi
+ ai(t)∇c′(t)

∂

∂xi

)
Use the formula above and the definitions of connection and Christoffel symbols to show that
c(t) is geodesic (i.e., ∇tc

′(t) = 0) if and only if for any k = 1, . . . , n

c′′k(t) +
n∑

i,j=1

c′i(t)c
′
j(t)Γ

k
ij = 0
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Solution: By the definition of covariant derivative,

∇tc′(t) =
∑
i

c′′i (t)
∂

∂xi
+
∑
i

c′i(t)∇c′(t)
∂

∂xi

Therefore, if c(t) is a geodesic, we have

0 = ∇tc′(t) =
∑
i

c′′i (t)
∂

∂xi
+
∑
i

c′i(t)∇P
j c

′
j(t)

∂
∂xj

∂

∂xi
=

=
∑
i

c′′i (t)
∂

∂xi
+
∑
i

c′i(t)
∑
j

c′j(t)∇ ∂
∂xj

∂

∂xi
=
∑
i

c′′i (t)
∂

∂xi
+
∑
i

c′i(t)
∑
j

c′j(t)
∑
k

Γkij
∂

∂xk
=

=
∑
k

c′′k(t)
∂

∂xk
+
∑
k

∑
i,j

c′i(t)c
′
j(t)Γ

k
ij

 ∂

∂xk
=
∑
k

c′′k(t) +
∑
i,j

c′i(t)c
′
j(t)Γ

k
ij

 ∂

∂xk

The equality shows that every component of the vector above is zero.

1.3. (?) Rescaling Lemma
Let c : [0, a]→M be a geodesic, and k > 0. Define a curve γ by

γ : [0, a/k]→M, γ(t) = c(kt)

Show that γ is geodesic with γ′(t) = kc′(kt).

Solution: Proof is sraightforward: all the entries of the corresponding differential equation for c(t)
are multiplied by k2.

1.4. Let (M, g) be a Riemannian manifold and p ∈M . Let ε > 0 be small enough such that

expp : Bε(0p)→ Bε(p) ⊂M

is a diffeomorphism. Let γ : [0, 1]→ Bε(p) \ {p} be any curve.

Show that there exist a curve v : [0, 1]→Mp, ‖v(s)‖= 1 for all s ∈ [0, 1], and a non-negative
function r : [0, 1]→ R≥0, such that

γ(s) = expp(r(s)v(s))

Solution: Since expp : Bε(0p) → Bε(p) is a diffeomorphism, for every s ∈ [0, 1] the point γ(s) can
be represented as expp(w(s)) for some w(s) ∈ Bε(0p). Define r(s) = ‖w(s)‖, v(s) = w(s)/r(s).

1.5. Let (M, g) be a Riemannian manifold and R its curvature tensor. Let f, g, h ∈ C∞(M), and
X, Y, Z,W be vector fields on M . Show that

(a) R(fX, Y )Z = fR(X, Y )Z;

(b) R(X, fY )Z = fR(X, Y )Z;

(c) 〈R(X, Y )fZ,W 〉 = 〈fR(X, Y )Z,W 〉;
(d) R(fX, gY )hZ = fghR(X, Y )Z.
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Solution:

(a) Note that [fX, Y ] = f [X,Y ]− (Y f)X. We have

R(fX, Y )Z = −(∇fX∇Y Z −∇Y∇fXZ) +∇[fX,Y ]Z =

= −f∇X∇Y Z +∇Y (f∇XZ) +∇f [X,Y ]−(Y f)XZ =

= −f∇X∇Y Z + (Y f)∇XZ + f∇Y∇XZ + f∇[X,Y ]Z − (Y f)∇XZ =

= −f(∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z) = fR(X,Y )Z.

(b) Using the symmetry R(X,Y )Z = −R(Y,X)Z, we conclude with (a) that

R(X, fY )Z = −R(fY,X)Z = −fR(Y,X)Z = fR(X,Y )Z.

(c) Using the symmetry 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉 twice, we conclude with (a) that

〈R(X,Y )fZ,W 〉 = 〈R(fZ,W )X,Y 〉 = 〈fR(Z,W )X,Y 〉 =
= f〈R(Z,W )X,Y 〉 = f〈R(X,Y )Z,W 〉 = 〈fR(X,Y )Z,W 〉.

(d) Since (c) holds for all vector fields W , we conclude that

R(X,Y )fZ = fR(X,Y )Z.

Using this together with (a) and (b), we obtain

R(fX, gY )hZ = fghR(X,Y )Z.

1.6. First Bianchi Identity
Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi
Identity:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

Solution: We have

− (R(X,Y )Z +R(Y,Z)X +R(Z,X)Y ) = (∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)+

+ (∇Y∇ZX −∇Z∇YX −∇[Y,Z]X) + (∇Z∇XY −∇X∇ZY −∇[Z,X]Y ) =

= ∇X(∇Y Z−∇ZY )+∇Y (∇ZX−∇XZ)+∇Z(∇XY −∇YX)−(∇[X,Y ]Z)+∇[Y,Z]X)+∇[Z,X]Y ) =

= ∇X [Y,Z] +∇Y [Z,X] +∇Z [X,Y ]− (∇[X,Y ]Z) +∇[Y,Z]X) +∇[Z,X]Y ) =

= (∇X [Y,Z]−∇[Y,Z]X) + (∇Y [Z,X]−∇[Z,X]Y ) + (∇Z [X,Y ]−∇[X,Y ]Z) =

= −([[Y,Z], X] + [[Z,X], Y ] + [[X,Y ], Z]) = 0.
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1.7. Constant sectional curvature of real hyperbolic n-space
Let Hn be the upper halfspace model of the real hyperbolic n-space

Hn = {(x1, x2, . . . , xn) ∈ Rn |xn > 0}

Recall that the hyperbolic metric g̃ on Hn is given by

g̃ii =
1

x2
n

, g̃ij = 0 for i 6= j

Consider first n = 3.

(a) Compute the Christoffel symbols of (H3, g̃).

(b) Show that sectional curvatures K( ∂
∂x2
, ∂
∂x3

), K( ∂
∂x1
, ∂
∂x3

), K( ∂
∂x1
, ∂
∂x2

) all are equal to −1

at every point of H3.

(c) Use (b) and the linearity of Riemann curvature tensor to show that real hyperbolic 3-
space has constant sectional curvature.

Consider now the general case.

(d) Compute the Christoffel symbols of (Hn, g̃). (The computations are very similar to (a)).

(e) Show that for every a = (a1, a2, . . . , an) ∈ Hn and every i, j ∈ [1, . . . , n−1] the submanifold

N = {x ∈ Hn |xk = ak for all k 6= i, j, n}

with the metric induced from Hn is a real hyperbolic 3-space.

(f) Show that K( ∂
∂xi
, ∂
∂xj

) = −1 for all pairs (i, j) at every point of Hn.

(g) Use (f) and the linearity of Riemann curvature tensor to show that real hyperbolic n-space
has constant sectional curvature.

Solution:

(a) We use the formula

Γkij =
1
2

n∑
r=1

gkr(gir,j + gjr,i − gij,r)

The only non-zero gij,k are gii,3 = −2/x3
3. Thus, the only non-zero Christoffel symbols are

Γ3
11 = Γ3

22 =
1
x3
, Γ3

33 = Γ1
13 = Γ1

31 = Γ2
23 = Γ2

32 = − 1
x3
,

the remaining ones are zero. Using this, we compute that

∇ ∂
∂x1

∂

∂x1
= ∇ ∂

∂x2

∂

∂x2
= Γ3

11

∂

∂x3
= Γ3

22

∂

∂x3
=

1
x3

∂

∂x3
, ∇ ∂

∂x3

∂

∂x3
= Γ3

33

∂

∂x3
= − 1

x3

∂

∂x3
,

∇ ∂
∂x1

∂

∂x2
= ∇ ∂

∂x2

∂

∂x1
= 0, ∇ ∂

∂x1

∂

∂x3
= ∇ ∂

∂x3

∂

∂x1
= − 1

x3

∂

∂x1
, ∇ ∂

∂x2

∂

∂x3
= ∇ ∂

∂x3

∂

∂x2
= − 1

x3

∂

∂x2
.
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(b) First, we compute K( ∂
∂x1

, ∂
∂x3

).

K(
∂

∂x1
,
∂

∂x3
) =

〈
R( ∂

∂x3
, ∂
∂x1

) ∂
∂x3

, ∂
∂x1

〉
‖ ∂
∂x1
‖2‖ ∂

∂x3
‖2 −

〈
∂
∂x1

, ∂
∂x3

〉2 =

=
1

‖ ∂
∂x1
‖2‖ ∂

∂x3
‖2

〈
∇ ∂

∂x1

∇ ∂
∂x3

∂

∂x3
−∇ ∂

∂x3

∇ ∂
∂x1

∂

∂x3
−∇h

∂
∂x1

, ∂
∂x3

i ∂

∂x3
,
∂

∂x1

〉
=

= x2
3x

2
3

〈
−∇ ∂

∂x1

1
x3

∂

∂x3
+∇ ∂

∂x3

1
x3

∂

∂x1
,
∂

∂x1

〉
=

= x4
3

〈
− 1
x3
∇ ∂

∂x1

∂

∂x3
+

∂

∂x3

1
x3

∂

∂x1
+

1
x3
∇ ∂

∂x3

∂

∂x1
,
∂

∂x1

〉
=

= x4
3

〈
1
x2

3

∂

∂x1
− 1
x2

3

∂

∂x1
+− 1

x2
3

∂

∂x1
,
∂

∂x1

〉
= −x4

3

1
x2

3

1
x2

3

= −1

Computations of K( ∂
∂x2

, ∂
∂x3

) and K( ∂
∂x2

, ∂
∂x1

) are similar.

Remark. In fact, the plane spanned by vectors ∂
∂x1

, ∂
∂x3

is tangent to vertical hyperbolic plane
x2 = c, so the corresponding sectional curvature is exactly the curvature of hyperbolic plane which
is equal to -1. Thus, we could avoid all the computations. The same holds for the plane spanned
by vectors ∂

∂x2
, ∂
∂x3

. The plane spanned by vectors ∂
∂x1

, ∂
∂x2

is tangent to a Euclidean hemisphere
(x1 − a)2 + (x2 − b)2 + x2

3 = R2 which is also a hyperbolic plane in H3.

(c) By computations similar to ones done in (b), we obtain that〈
R(

∂

∂x1
,
∂

∂x2
)
∂

∂x3
,
∂

∂x1

〉
=
〈
R(

∂

∂x2
,
∂

∂x1
)
∂

∂x3
,
∂

∂x2

〉
=
〈
R(

∂

∂x3
,
∂

∂x1
)
∂

∂x2
,
∂

∂x3

〉
= 0

Now we see that for all vectors {v1, v2, v2, v4} ⊂ { ∂
∂x1

, ∂
∂x2

, ∂
∂x3
} we have an equality

〈R(v1, v2)v3, v4〉 = − (〈v1, v3〉 〈v2, v4〉 − 〈v1, v4〉 〈v2, v3〉)

By linearity, the equality above holds for any quadruple of tangent vectors. According to Prob-
lem 2.1, this implies that sectional curvature is constant and equal −1.

(d) Exactly the same as (a).

(e) The tangent space in every point of N is spanned by vectors { ∂
∂xi
, ∂
∂xj

, ∂
∂xn
}. The restriction of

the metric g̃ to this plane gives 3-dimensional symmetric bilinear form coinciding with one for H3.

(f) This follows from (e).

(g) Identical to (c).

1.8. Horosphere in hyperbolic 3-space
Consider a horosphere

M = {x ∈ H3 |x2
1 + x2

2 + (x3 − 1)2 = 1}

in real hyperbolic 3-space with metric g induced from H3.

(a) Parametrize M using spherical coordinates, and compute the induced metric.

(b) Compute the Christoffel symbols of (M, g).

(c) Compute the curvature tensor of (M, g). More precisely, prove that the curvature tensor
is identically zero.
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Solution: (a) Parametrize the horosphere by (ϕ, ϑ), where

(x1, x2, x3) = (cosϕ sinϑ, sinϕ sinϑ, 1 + cosϑ)

Then the metric gij can be written as

g11 =
sin2 ϑ

(1 + cosϑ)2
, g22 =

1
(1 + cosϑ)2

, g12 = g21 = 0.

(b) Computation of Christoffel symbols (as in Problem 1.7) gives

Γ2
11 = − sinϑ, Γ1

12 = Γ1
21 =

1
sinϑ

, Γ2
22 =

sinϑ
1 + cosϑ

,

while all the remaining ones are zero.

(c) Using (b), we obtain

∇ ∂
∂ϕ

∂

∂ϕ
= − sinϑ

∂

∂ϑ
, ∇ ∂

∂ϕ

∂

∂ϑ
= ∇ ∂

∂ϑ

∂

∂ϕ
=

1
sinϑ

∂

∂ϕ
, ∇ ∂

∂ϑ

∂

∂ϑ
=

sinϑ
1 + cosϑ

∂

∂ϑ

We need to compute 〈R( ∂
∂ϕ ,

∂
∂ϑ) ∂

∂ϕ ,
∂
∂ϑ〉 as a unique (up to permutation of indices) non-zero com-

ponent of the curvature tensor.

R(
∂

∂ϕ
,
∂

∂ϑ
)
∂

∂ϕ
= ∇ ∂

∂ϑ
∇ ∂

∂ϕ

∂

∂ϕ
−∇ ∂

∂ϕ
∇ ∂

∂ϑ

∂

∂ϕ
+∇h

∂
∂ϕ
, ∂
∂ϑ

i ∂
∂ϕ

Since the commutator of ∂
∂ϕ and ∂

∂ϑ is zero, we obtain

R(
∂

∂ϕ
,
∂

∂ϑ
)
∂

∂ϕ
= ∇ ∂

∂ϑ
∇ ∂

∂ϕ

∂

∂ϕ
−∇ ∂

∂ϕ
∇ ∂

∂ϑ

∂

∂ϕ
=

= ∇ ∂
∂ϑ

(− sinϑ)
∂

∂ϑ
−∇ ∂

∂ϕ

1
sinϑ

∂

∂ϕ
= − cosϑ

∂

∂ϑ
− sinϑ∇ ∂

∂ϑ

∂

∂ϑ
− 1

sinϑ
∇ ∂

∂ϕ

∂

∂ϕ
=

= − cosϑ
∂

∂ϑ
− sinϑ

sinϑ
1 + cosϑ

∂

∂ϑ
− 1

sinϑ
(− sinϑ)

∂

∂ϑ
= (− cosϑ− sin2 ϑ

1 + cosϑ
+ 1)

∂

∂ϑ
= 0
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