Riemannian Geometry IV, Homework 2 (Week 13)

Due date for starred problems: Tuesday, February 12.

2.1. Let (M, g) be a Riemannian manifold. The goal of this exercise is to show that M is of constant sectional curvature K_0 if and only if

$$\langle R(v_1, v_2)v_3, v_4 \rangle = K_0(\langle v_1, v_3 \rangle \langle v_2, v_4 \rangle - \langle v_1, v_4 \rangle \langle v_2, v_3 \rangle)$$

for any $p \in M$ and $v_1, v_2, v_3, v_4 \in M_p$.

Denote the expression $K_0(\langle v_1, v_3 \rangle \langle v_2, v_4 \rangle - \langle v_2, v_3 \rangle \langle v_1, v_4 \rangle)$ by (v_1, v_2, v_3, v_4) .

(a) Show that if

$$\langle R(v_1, v_2)v_3, v_4 \rangle = (v_1, v_2, v_3, v_4)$$

for any four tangent vectors $v_1, v_2, v_3, v_4 \in M_p$, then M is of constant sectional curvature K_0 .

Now assume that M is of constant sectional curvature K_0 . Our aim is to show that

$$\langle R(v_1, v_2)v_3, v_4 \rangle = (v_1, v_2, v_3, v_4)$$

for any four tangent vectors $v_1, v_2, v_3, v_4 \in M_p$.

- (b) Show that the expression (v_1, v_2, v_3, v_4) is a tensor, i.e. it is multilinear.
- (c) Show that (v_1, v_2, v_3, v_4) has the same symmetries as Riemann curvature tensor has. Namely,
 - $(v_1, v_2, v_3, v_4) = -(v_2, v_1, v_3, v_4)$
 - $(v_1, v_2, v_3, v_4) = -(v_1, v_2, v_4, v_3)$
 - $(v_1, v_2, v_3, v_4) = (v_3, v_4, v_1, v_2)$
 - $(v_1, v_2, v_3, v_4) + (v_2, v_3, v_1, v_4) + (v_3, v_1, v_2, v_4) = 0$
- (d) Show that if $\{v_1, v_2, v_3, v_4\} \subset \{v, w\}$, i.e. no more than two distinct vectors are involved, then

$$\langle R(v_1, v_2)v_3, v_4 \rangle = (v_1, v_2, v_3, v_4).$$

(e) Show that if no more than three distinct vectors are involved, then

$$\langle R(v_1, v_2)v_3, v_4 \rangle = (v_1, v_2, v_3, v_4).$$

(f) Show that for any four vectors $\{v_1, v_2, v_3, v_4\}$

$$\langle R(v_1, v_2)v_3, v_4 \rangle - (v_1, v_2, v_3, v_4) = \langle R(v_3, v_1)v_2, v_4 \rangle - (v_3, v_1, v_2, v_4),$$

i.e. the difference above is invariant with respect to cyclic permutation of first three arguments.

(g) Use Bianchi identity to prove the initial statement.

2.2. (\star) A Riemannian manifold (M,g) is called *Einstein manifold* if there exists $c \in \mathbb{R}$ such that

$$Ric_p(v, w) = c\langle v, w \rangle$$

for every $p \in M$, $v, w \in M_p$.

(a) Show that (M,g) is Einstein manifold if and only if there exists $c \in \mathbb{R}$ such that

$$Ric_p(v) = c$$

for every $p \in M$ and unit tangent vector $v \in M_p$.

- (b) Show that if (M, g) is of constant sectional curvature then (M, g) is Einstein manifold.
- **2.3.** Let (M,g) be a Riemannian manifold, and ∇ be the Levi-Civita connection. Recall that a map

$$A: \Gamma(TM) \times \cdots \times \Gamma(TM) \to C^{\infty}(M) \text{ or } \Gamma(TM)$$

is a tensor if it is linear in each argument, i.e.,

$$A(X_1,\cdots,fX_i+gY_i,\cdots,X_r)=fA(X_1,\cdots,X_i,\cdots,X_r)+gA(X_1,\cdots,Y_i,\cdots,X_r),$$

for all $X, Y \in \Gamma(TM)$ and $f, g \in C^{\infty}(M)$.

(a) Let

$$T: \underbrace{\Gamma(TM) \times \cdots \times \Gamma(TM)}_{r \text{ factors}} \to C^{\infty}(M)$$

be a tensor. The *covariant derivative* of T is a map

$$\nabla T : \underbrace{\Gamma(TM) \times \cdots \times \Gamma(TM)}_{r+1 \text{ factors}} \to C^{\infty}(M),$$

defined by

$$\nabla T(X_1, \dots, X_r, Y) = Y(T(X_1, \dots, X_r)) - \sum_{j=1}^r T(X_1, \dots, \nabla_Y X_j, \dots, X_r).$$

Show that ∇T is a tensor.

Tensor T is called parallel if $\nabla T = 0$.

(b) Assume that $T_1, T_2 : \Gamma(TM) \times \Gamma(TM) \to C^{\infty}(M)$ are parallel tensors. Show that the tensor $T : \Gamma(TM) \times \Gamma(TM) \times \Gamma(TM) \times \Gamma(TM) \to C^{\infty}(M)$, defined as

$$T(X_1, X_2, X_3, X_4) = T_1(X_1, X_2)T_2(X_3, X_4),$$

is also parallel.

(c) Use (b) to show that $\nabla R' = 0$ for the tensor

$$R'(X, Y, Z, W) = \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle.$$

(d) Use (c) and Problem 2.1 to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$R(X, Y, Z, W) := \langle R(X, Y)Z, W \rangle.$$