Riemannian Geometry IV, Homework 2 (Week 13)

Due date for starred problems: Tuesday, February 12.
2.1. Let (M, g) be a Riemannian manifold. The goal of this exercise is to show that M is of constant sectional curvature K_{0} if and only if

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=K_{0}\left(\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle-\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle\right)
$$

for any $p \in M$ and $v_{1}, v_{2}, v_{3}, v_{4} \in M_{p}$.
Denote the expression $K_{0}\left(\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle-\left\langle v_{2}, v_{3}\right\rangle\left\langle v_{1}, v_{4}\right\rangle\right)$ by $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$.
(a) Show that if

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

for any four tangent vectors $v_{1}, v_{2}, v_{3}, v_{4} \in M_{p}$, then M is of constant sectional curvature K_{0}.
Now assume that M is of constant sectional curvature K_{0}. Our aim is to show that

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

for any four tangent vectors $v_{1}, v_{2}, v_{3}, v_{4} \in M_{p}$.
(b) Show that the expression $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is a tensor, i.e. it is multilinear.
(c) Show that $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ has the same symmetries as Riemann curvature tensor has. Namely,

$$
\begin{aligned}
& \cdot\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=-\left(v_{2}, v_{1}, v_{3}, v_{4}\right) \\
& \cdot\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=-\left(v_{1}, v_{2}, v_{4}, v_{3}\right) \\
& \cdot\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left(v_{3}, v_{4}, v_{1}, v_{2}\right) \\
& \cdot\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+\left(v_{2}, v_{3}, v_{1}, v_{4}\right)+\left(v_{3}, v_{1}, v_{2}, v_{4}\right)=0
\end{aligned}
$$

(d) Show that if $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subset\{v, w\}$, i.e. no more than two distinct vectors are involved, then

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) .
$$

(e) Show that if no more than three distinct vectors are involved, then

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) .
$$

(f) Show that for any four vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle-\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left\langle R\left(v_{3}, v_{1}\right) v_{2}, v_{4}\right\rangle-\left(v_{3}, v_{1}, v_{2}, v_{4}\right),
$$

i.e. the difference above is invariant with respect to cyclic permutation of first three arguments.
(g) Use Bianchi identity to prove the initial statement.
2.2. (\star) A Riemannian manifold (M, g) is called Einstein manifold if there exists $c \in \mathbb{R}$ such that

$$
\operatorname{Ric}_{p}(v, w)=c\langle v, w\rangle
$$

for every $p \in M, v, w \in M_{p}$.
(a) Show that (M, g) is Einstein manifold if and only if there exists $c \in \mathbb{R}$ such that

$$
\operatorname{Ric}_{p}(v)=c
$$

for every $p \in M$ and unit tangent vector $v \in M_{p}$.
(b) Show that if (M, g) is of constant sectional curvature then (M, g) is Einstein manifold.
2.3. Let (M, g) be a Riemannian manifold, and ∇ be the Levi-Civita connection. Recall that a map

$$
A: \Gamma(T M) \times \cdots \times \Gamma(T M) \rightarrow C^{\infty}(M) \text { or } \Gamma(T M)
$$

is a tensor if it is linear in each argument, i.e.,

$$
A\left(X_{1}, \cdots, f X_{i}+g Y_{i}, \cdots, X_{r}\right)=f A\left(X_{1}, \cdots, X_{i}, \cdots, X_{r}\right)+g A\left(X_{1}, \cdots, Y_{i}, \cdots, X_{r}\right),
$$

for all $X, Y \in \Gamma(T M)$ and $f, g \in C^{\infty}(M)$.
(a) Let

$$
T: \underbrace{\Gamma(T M) \times \cdots \times \Gamma(T M)}_{r \text { factors }} \rightarrow C^{\infty}(M)
$$

be a tensor. The covariant derivative of T is a map

$$
\nabla T: \underbrace{\Gamma(T M) \times \cdots \times \Gamma(T M)}_{r+1 \text { factors }} \rightarrow C^{\infty}(M),
$$

defined by

$$
\nabla T\left(X_{1}, \ldots, X_{r}, Y\right)=Y\left(T\left(X_{1}, \ldots, X_{r}\right)\right)-\sum_{j=1}^{r} T\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right)
$$

Show that ∇T is a tensor.

Tensor T is called parallel if $\nabla T=0$.
(b) Assume that $T_{1}, T_{2}: \Gamma(T M) \times \Gamma(T M) \rightarrow C^{\infty}(M)$ are parallel tensors. Show that the tensor $T: \Gamma(T M) \times \Gamma(T M) \times \Gamma(T M) \times \Gamma(T M) \rightarrow C^{\infty}(M)$, defined as

$$
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right),
$$

is also parallel.
(c) Use (b) to show that $\nabla R^{\prime}=0$ for the tensor

$$
R^{\prime}(X, Y, Z, W)=\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle
$$

(d) Use (c) and Problem 2.1 to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$
R(X, Y, Z, W):=\langle R(X, Y) Z, W\rangle
$$

