Riemannian Geometry IV, Homework 3 (Week 14)

Due date for starred problems: Tuesday, February 12.

3.1. (\star) Recall that Bonnet-Myers theorem implies that if (M, g) is complete, and there is $c>0$ such that $\operatorname{Ric}_{p}(v)>c$ for every $p \in M$ and for every unit tangent vector v, then the diameter of M is finite.
Show that the assumption $c>0$ is essential.
Hint: Consider an appropriate quadratic surface in \mathbb{R}^{3} with induced metric.

Solution:

Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}+y^{2}\right\}$ be a paraboloid with induced metric. If we parametrize M by $\left(x, y, x^{2}+y^{2}\right)$, an explicit computation shows that (any) curvature of M is equal to $4 /(1+4 x+4 y)^{2}$, so it is positive at every point. It is obvious that M is complete and the diameter of M is infinite.

3.2. Geodesic normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\epsilon>0$ such that

$$
\exp _{p}: B_{\epsilon}\left(0_{p}\right) \rightarrow B_{\epsilon}(p) \subset M
$$

is a diffeomorphism. Let v_{1}, \ldots, v_{n} be an orthonormal basis of M_{p}. Then a local coordinate chart of M is given by $\varphi=\left(x_{1}, \ldots, x_{n}\right): B_{\epsilon}(p) \rightarrow V:=\left\{w \in \mathbb{R}^{n} \mid\|w\|<\epsilon\right\}$ via

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum_{i=1}^{n} x_{i} v_{i}\right)
$$

The coordinate functions x_{1}, \ldots, x_{n} of φ are called geodesic normal coordinates.
(a) Let $g_{i j}$ be the metric in terms of the above coordinate system φ. Show that at $p \in M$:

$$
g_{i j}(p)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

(b) Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ be an arbitrary vector, and $c(t)=\varphi^{-1}(t w)$. Explain why $c(t)$ is a geodesic and deduce from this fact that

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0
$$

for all $1 \leq k \leq n$.
(c) Derive from (b) that all Christoffel symbols $\Gamma_{i j}^{k}$ of the chart φ vanish at the point $p \in M$.

Solution:

(a) We will show that

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=v_{i} .
$$

This will imply

$$
g_{i j}(p)=\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle_{p}=\left\langle v_{i}, v_{j}\right\rangle_{p}=\delta_{i j} .
$$

Denote by $\left\{e_{i}\right\}$ orthonormal basis in $V \subset \mathbb{R}^{n}$. Now, as $\varphi(p)=0$, we can write

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\frac{d}{d t}\right|_{t=0} \varphi^{-1}\left(0+t e_{i}\right)=\left.\frac{d}{d t}\right|_{t=0} \exp _{p}\left(t v_{i}\right)=v_{i}
$$

which proves (a).
(b) We have

$$
c(t)=\varphi^{-1}\left(t w_{1}, \ldots, t w_{n}\right)=\exp _{p}\left(t \sum_{j} w_{j} v_{j}\right)
$$

Let $v=\sum_{j} w_{j} v_{j} \in M_{p}$. Then the expression above shows that c is a geodesic with initial vector v. Let $\left.\left(c_{1}, \ldots, c_{n}\right)\right|_{t}=\varphi(c(t))$, i.e., $c_{j}(t)=t w_{j}, c_{j}^{\prime}(t)=w_{j}$ and $c_{j}^{\prime \prime}(t)=0$. Let ∇_{t} denote covariant derivative along c. Since c is a geodesic, we have

$$
\begin{aligned}
& 0=\nabla_{t} c^{\prime}=\nabla_{t} \sum_{j} c_{j}^{\prime}\left(\frac{\partial}{\partial x_{j}}\right.(c(t)))= \\
&=\sum_{j} w_{j} \nabla_{c^{\prime}} \frac{\partial}{\partial x_{j}}= \\
& w_{i} w_{j}\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}\right)(c(t))=\sum_{k}\left(\sum_{i, j} w_{i} w_{j}\left(\Gamma_{i j}^{k}(c(t))\right)\right) \frac{\partial}{\partial x_{k}}(c(t)) .
\end{aligned}
$$

Using the fact that $\frac{\partial}{\partial x_{k}}$ form a basis, we conclude that

$$
\begin{equation*}
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0 \tag{*}
\end{equation*}
$$

for all $k \in\{1, \ldots, n\}$.
(c) Evaluating (*) at $t=0$, we obtain

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(p)=0 \quad \text { for all } w \in \mathbb{R}^{n}
$$

The choice $w=e_{i}$ yields

$$
\Gamma_{i i}^{k}(p)=0
$$

and then the choice $w=e_{i}+e_{j}$ yields

$$
2 \Gamma_{i j}^{k}(p)=0
$$

so we conclude that all Christoffel symbols vanish at p. Consequently, we have

$$
\nabla \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}}(p)=0 .
$$

3.3. Let (M, g) be a Riemannian manifold and $v_{1}, \ldots, v_{n} \in T_{p} M$ be an orthonormal basis. As it follows from problem 3.2, for the geodesic normal coordinates $\varphi: B_{\epsilon}(p) \rightarrow B_{\epsilon}(0) \subset \mathbb{R}^{n}$,

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum x_{i} v_{i}\right)
$$

we have $\left.\frac{\partial}{\partial x_{i}}\right|_{p}=v_{i}$ and $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=0$.
Define an orthonormal frame $E_{1}, \ldots, E_{n}: B_{\epsilon}(p) \rightarrow T M$ (i.e. an n-tuple of vector fields composing an orthonormal basis of M_{q} in every point $q \in B_{\epsilon}(p)$) by Gram-Schmidt orthonormalisation, i.e.,

$$
\begin{aligned}
F_{1}(q) & :=\left.\frac{\partial}{\partial x_{1}}\right|_{q}, \quad E_{1}(q):=\frac{1}{\left\|F_{1}(q)\right\|} F_{1}(q) \\
& \ldots \\
F_{k}(q) & :=\left.\frac{\partial}{\partial x_{k}}\right|_{q}-\sum_{j=1}^{k-1}\left\langle\left.\frac{\partial}{\partial x_{k}}\right|_{q}, E_{j}(q)\right\rangle E_{j}(q), \quad E_{k}(q):=\frac{1}{\left\|F_{k}(q)\right\|} F_{k}(q),
\end{aligned}
$$

As you might have shown in problem $3.2, E_{i}(p)=v_{i}$ and $E_{1}(q), \ldots, E_{n}(q)$ are orthonormal in M_{q} for all $q \in B_{\epsilon}(p)$. Show that

$$
\left(\nabla_{E_{i}} E_{j}\right)(p)=0
$$

for all $i, j \in\{1, \ldots, n\}$.
Hint: Prove first by induction over k that

$$
\begin{align*}
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k}\right)(p) & =0 \tag{1}\\
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k}, F_{k}\right\rangle^{-1 / 2}(p) & =0 \tag{2}\\
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k}\right)(p) & =0 \tag{3}
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$.
Solution: We prove the statements (1)-(3) by induction on k for all $i \in\{1, \ldots, n\}$.
For $k=1$ everything follows immediately from Problem 3.2(c). Assume all three equations hold for k. Then we obtain

$$
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k+1}\right)(p)=\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{k+1}}\right)(p)-\left.\frac{\partial}{\partial x_{i}}\right|_{p} \sum_{j=1}^{k}\left\langle\frac{\partial}{\partial x_{k+1}}, E_{j}\right\rangle E_{j} .
$$

Using at the right hand side the product rule, the Riemannian property of the Levi-Civita connection, and the induction hypothesis $\nabla_{\frac{\partial}{\partial x_{i}}} E_{j}(p)=0$ for $1 \leq j \leq k$, we conclude that the whole expression vanishes. Next, we obtain

$$
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k+1}, F_{k+1}\right\rangle^{-1 / 2}(p)=-\frac{1}{\left\|F_{k+1}(p)\right\|^{3}}\left\langle\nabla_{\frac{\partial}{\partial x_{i}}} F_{k+1}, F_{k+1}\right\rangle(p)
$$

(you will meet similar computation in the proof of the first variational formula of length), which implies that this expression vanishes because of (1). Finally,

$$
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k+1}\right)(p)=\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k+1}, F_{k+1}\right\rangle^{-1 / 2}(p) F_{k+1}(p)+\frac{1}{\left\|F_{k+1}(p)\right\|}\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k+1}\right)(p),
$$

which vanishes again because of (1) and (2). This completes the induction procedure.
We conclude

$$
\left(\nabla_{E_{i}} E_{j}\right)(p)=0
$$

from (3), since E_{i} is just a linear combination of the basis vectors $\frac{\partial}{\partial x_{l}}$.

