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Riemannian Geometry IV, Homework 3 (Week 14)

Due date for starred problems: Tuesday, February 12.

3.1. (?) Recall that Bonnet-Myers theorem implies that if (M, g) is complete, and there is c > 0
such that Ricp(v) > c for every p ∈M and for every unit tangent vector v, then the diameter
of M is finite.

Show that the assumption c > 0 is essential.

Hint: Consider an appropriate quadratic surface in R3 with induced metric.

Solution:

Let M = {(x, y, z) ∈ R3 | z = x2 +y2} be a paraboloid with induced metric. If we parametrize M by
(x, y, x2 +y2), an explicit computation shows that (any) curvature of M is equal to 4/(1+4x+4y)2,
so it is positive at every point. It is obvious that M is complete and the diameter of M is infinite.

3.2. Geodesic normal coordinates
Let (M, g) be a Riemannian manifold and p ∈M . Let ε > 0 such that

expp : Bε(0p)→ Bε(p) ⊂M

is a diffeomorphism. Let v1, . . . , vn be an orthonormal basis of Mp. Then a local coordinate
chart of M is given by ϕ = (x1, . . . , xn) : Bε(p)→ V := {w ∈ Rn | ‖w‖< ε} via

ϕ−1(x1, . . . , xn) = expp(
n∑
i=1

xivi).

The coordinate functions x1, . . . , xn of ϕ are called geodesic normal coordinates.

(a) Let gij be the metric in terms of the above coordinate system ϕ. Show that at p ∈M :

gij(p) = δij =

{
1 if i = j,

0 if i 6= j.

(b) Let w = (w1, . . . , wn) ∈ Rn be an arbitrary vector, and c(t) = ϕ−1(tw). Explain why c(t)
is a geodesic and deduce from this fact that∑

i,j

wiwjΓ
k
ij(c(t)) = 0,

for all 1 ≤ k ≤ n.

(c) Derive from (b) that all Christoffel symbols Γkij of the chart ϕ vanish at the point p ∈M .



Solution:

(a) We will show that
∂

∂xi

∣∣∣
p

= vi.

This will imply

gij(p) = 〈 ∂
∂xi

,
∂

∂xj
〉p = 〈vi, vj〉p = δij .

Denote by {ei} orthonormal basis in V ⊂ Rn. Now, as ϕ(p) = 0, we can write

∂

∂xi

∣∣∣
p

=
d

dt

∣∣∣
t=0

ϕ−1(0 + tei) =
d

dt

∣∣∣
t=0

expp(tvi) = vi,

which proves (a).

(b) We have
c(t) = ϕ−1(tw1, . . . , twn) = expp(t

∑
j

wjvj).

Let v =
∑

j wjvj ∈ Mp. Then the expression above shows that c is a geodesic with initial vector
v. Let (c1, . . . , cn)|t = ϕ(c(t)), i.e., cj(t) = twj , c′j(t) = wj and c′′j (t) = 0. Let ∇t denote covariant
derivative along c. Since c is a geodesic, we have

0 = ∇tc′ = ∇t
∑
j

c′j

(
∂

∂xj
(c(t))

)
=
∑
j

wj∇c′
∂

∂xj
=

=
∑
i,j

wiwj

(
∇ ∂

∂xi

∂

∂xj

)
(c(t)) =

∑
k

∑
i,j

wiwj(Γkij(c(t)))

 ∂

∂xk
(c(t)).

Using the fact that ∂
∂xk

form a basis, we conclude that

(∗)
∑
i,j

wiwjΓkij(c(t)) = 0

for all k ∈ {1, . . . , n}.
(c) Evaluating (∗) at t = 0, we obtain∑

i,j

wiwjΓkij(p) = 0 for all w ∈ Rn.

The choice w = ei yields
Γkii(p) = 0,

and then the choice w = ei + ej yields
2Γkij(p) = 0,

so we conclude that all Christoffel symbols vanish at p. Consequently, we have

∇ ∂
∂xi

∂

∂xj
(p) = 0.

3.3. Let (M, g) be a Riemannian manifold and v1, . . . , vn ∈ TpM be an orthonormal basis. As it
follows from problem 3.2, for the geodesic normal coordinates ϕ : Bε(p)→ Bε(0) ⊂ Rn,

ϕ−1(x1, . . . , xn) = expp(
∑

xivi)



we have ∂
∂xi
|p = vi and ∇ ∂

∂xi

∂
∂xj

= 0.

Define an orthonormal frame E1, . . . , En : Bε(p) → TM (i.e. an n-tuple of vector fields
composing an orthonormal basis of Mq in every point q ∈ Bε(p)) by Gram-Schmidt or-
thonormalisation, i.e.,

F1(q) :=
∂

∂x1

∣∣∣
q
, E1(q) :=

1

‖F1(q)‖
F1(q),

. . .

Fk(q) :=
∂

∂xk

∣∣∣
q
−

k−1∑
j=1

〈
∂

∂xk

∣∣∣
q
, Ej(q)

〉
Ej(q), Ek(q) :=

1

‖Fk(q)‖
Fk(q),

. . .

As you might have shown in problem 3.2, Ei(p) = vi and E1(q), . . . , En(q) are orthonormal
in Mq for all q ∈ Bε(p). Show that

(∇Ei
Ej) (p) = 0

for all i, j ∈ {1, . . . , n}.

Hint: Prove first by induction over k that(
∇ ∂

∂xi

Fk

)
(p) = 0, (1)

∇ ∂
∂xi

〈Fk, Fk〉−1/2(p) = 0, (2)(
∇ ∂

∂xi

Ek

)
(p) = 0, (3)

for all i ∈ {1, . . . , n}.

Solution: We prove the statements (1)–(3) by induction on k for all i ∈ {1, . . . , n}.
For k = 1 everything follows immediately from Problem 3.2(c). Assume all three equations hold
for k. Then we obtain(

∇ ∂
∂xi

Fk+1

)
(p) =

(
∇ ∂

∂xi

∂

∂xk+1

)
(p)− ∂

∂xi

∣∣∣
p

k∑
j=1

〈
∂

∂xk+1
, Ej

〉
Ej .

Using at the right hand side the product rule, the Riemannian property of the Levi-Civita con-
nection, and the induction hypothesis ∇ ∂

∂xi

Ej(p) = 0 for 1 ≤ j ≤ k, we conclude that the whole

expression vanishes. Next, we obtain

∇ ∂
∂xi

〈Fk+1, Fk+1〉−1/2(p) = − 1
‖Fk+1(p)‖3

〈∇ ∂
∂xi

Fk+1, Fk+1〉(p)

(you will meet similar computation in the proof of the first variational formula of length), which
implies that this expression vanishes because of (1). Finally,(

∇ ∂
∂xi

Ek+1

)
(p) = ∇ ∂

∂xi

〈Fk+1, Fk+1〉−1/2(p)Fk+1(p) +
1

‖Fk+1(p)‖

(
∇ ∂

∂xi

Fk+1

)
(p),

which vanishes again because of (1) and (2). This completes the induction procedure.

We conclude
(∇EiEj) (p) = 0

from (3), since Ei is just a linear combination of the basis vectors ∂
∂xl

.


