Riemannian Geometry IV, Homework 3 (Week 14)

Due date for starred problems: Tuesday, February 12.

3.1. (*) Recall that Bonnet-Myers theorem implies that if (M, g) is complete, and there is c > 0 such that $Ric_p(v) > c$ for every $p \in M$ and for every unit tangent vector v, then the diameter of M is finite.

Show that the assumption c > 0 is essential.

Hint: Consider an appropriate quadratic surface in \mathbb{R}^3 with induced metric.

3.2. Geodesic normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\epsilon > 0$ such that

$$\exp_p: B_{\epsilon}(0_p) \to B_{\epsilon}(p) \subset M$$

is a diffeomorphism. Let v_1, \ldots, v_n be an orthonormal basis of M_p . Then a local coordinate chart of M is given by $\varphi = (x_1, \ldots, x_n) : B_{\epsilon}(p) \to V := \{ w \in \mathbb{R}^n \mid ||w|| < \epsilon \}$ via

$$\varphi^{-1}(x_1,\ldots,x_n) = \exp_p(\sum_{i=1}^n x_i v_i).$$

The coordinate functions x_1, \ldots, x_n of φ are called *geodesic normal coordinates*.

(a) Let g_{ij} be the metric in terms of the above coordinate system φ . Show that at $p \in M$:

$$g_{ij}(p) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

(b) Let $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ be an arbitrary vector, and $c(t) = \varphi^{-1}(tw)$. Explain why c(t) is a geodesic and deduce from this fact that

$$\sum_{i,j} w_i w_j \Gamma^k_{ij}(c(t)) = 0,$$

for all $1 \leq k \leq n$.

(c) Derive from (b) that all Christoffel symbols Γ_{ij}^k of the chart φ vanish at the point $p \in M$.

3.3. Let (M, g) be a Riemannian manifold and $v_1, \ldots, v_n \in T_p M$ be an orthonormal basis. As it follows from problem 3.2, for the geodesic normal coordinates $\varphi : B_{\epsilon}(p) \to B_{\epsilon}(0) \subset \mathbb{R}^n$,

$$\varphi^{-1}(x_1,\ldots,x_n) = \exp_p(\sum x_i v_i)$$

we have $\frac{\partial}{\partial x_i}|_p = v_i$ and $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = 0$.

Define an orthonormal frame $E_1, \ldots, E_n : B_{\epsilon}(p) \to TM$ (i.e. an *n*-tuple of vector fields composing an orthonormal basis of M_q in every point $q \in B_{\epsilon}(p)$) by Gram-Schmidt orthonormalisation, i.e.,

$$F_{1}(q) := \frac{\partial}{\partial x_{1}}\Big|_{q}, \qquad E_{1}(q) := \frac{1}{\|F_{1}(q)\|}F_{1}(q),$$

$$\dots$$

$$F_{k}(q) := \frac{\partial}{\partial x_{k}}\Big|_{q} - \sum_{j=1}^{k-1} \left\langle \frac{\partial}{\partial x_{k}}\Big|_{q}, E_{j}(q) \right\rangle E_{j}(q), \qquad E_{k}(q) := \frac{1}{\|F_{k}(q)\|}F_{k}(q),$$

$$\dots$$

As you might have shown in problem 3.2, $E_i(p) = v_i$ and $E_1(q), \ldots, E_n(q)$ are orthonormal in M_q for all $q \in B_{\epsilon}(p)$. Show that

$$\left(\nabla_{E_i} E_j\right)(p) = 0$$

for all $i, j \in \{1, ..., n\}$.

Hint: Prove first by induction over k that

$$\begin{pmatrix} \nabla_{\frac{\partial}{\partial x_i}} F_k \end{pmatrix} (p) = 0,$$

$$\nabla_{\frac{\partial}{\partial x_i}} \langle F_k, F_k \rangle^{-1/2} (p) = 0,$$

$$\begin{pmatrix} \nabla_{\frac{\partial}{\partial x_i}} E_k \end{pmatrix} (p) = 0,$$

for all $i \in \{1, ..., n\}$.