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Riemannian Geometry IV, Homework 4 (Week 15)

Due date for starred problems: Tuesday, March 12.

4.1. (?) First Variation Formula of Length
Let F : (−ε, ε) × [a, b] → M be a variation of a differentiable curve c : [a, b] → M with
c′(t) 6= 0 for all t ∈ [a, b] and X be its variational vector field. Let l = lF : (−ε, ε) denote the
associated length functional, i.e.,

l(s) =

∫ b

a

‖∂F
∂t

(s, t)‖dt.

(a) Show that

l′(0) =

∫ b

a

1

‖c′(t)‖
〈∇s

∣∣∣
s=0

∂F

∂t
(s, t), c′(t)〉 dt

(b) Applying Symmetry Lemma to (a), prove the first variational formula of length:

l′(0) =

∫ b

a

1

‖c′(t)‖
d

dt
〈X(t), c′(t)〉 dt−

∫ b

a

1

‖c′(t)‖
〈X(t),∇tc

′(t)〉 dt

Simplify the formula for the cases when

(c) c is a geodesic,

(d) F is a proper variation and c is parametrized proportionally to arc length.

(e) Show that if c is a geodesic and F is a proper variation, then l′(0) = 0.

(f) Let c : [a, b]→M be a differentiable curve. Show that if c is parametrized proportionally
to arc length, and l′(0) = 0 for every proper variation of c, then c is a geodesic.

Hint: Assume c is not a geodesic. Take a smooth non-negative function ϕ : [a, b]→ R≥0 with
ϕ(a) = ϕ(b) = 0 and consider a vector field along c X(t) = ϕ(t)∇tc

′(t). Using the fact that
X(t) is a variational vector field for some proper variation F of c, find appropriate ϕ such
that l′F (0) 6= 0.

Solution:

(a)

l′(s) =
d

ds

∫ b

a
〈∂F
∂t

(s, t),
∂F

∂t
(s, t)〉1/2 dt =

∫ b

a

d

ds
〈∂F
∂t

(s, t),
∂F

∂t
(s, t)〉1/2 dt =

=
∫ b

a

1
2
〈∂F
∂t

(s, t),
∂F

∂t
(s, t)〉1/2〈∂F

∂t
(s, t),

∂F

∂t
(s, t)〉 dt =

=
∫ b

a

1
2‖∂F

∂t (s, t)‖

(
〈∇s

∂F

∂t
(s, t),

∂F

∂t
(s, t)〉+ 〈∂F

∂t
(s, t),∇s

∂F

∂t
(s, t)〉

)
dt =

=
∫ b

a

1
‖∂F

∂t (s, t)‖
〈∇s

∂F

∂t
(s, t),

∂F

∂t
(s, t)〉 dt



Since ∂F
∂t (0, t) = c′(t), we obtain

l′(0) =
∫ b

a

1
‖c′(t)‖

〈∇s

∣∣∣
s=0

∂F

∂t
(s, t), c′(t)〉 dt

(b) Applying Symmetry Lemma to (a), we get

l′(0) =
∫ b

a

1
‖c′(t)‖

〈∇s

∣∣∣
s=0

∂F

∂t
(s, t), c′(t)〉 dt =

∫ b

a

1
‖c′(t)‖

〈∇t
∂F

∂s
(0, t), c′(t)〉 dt =

=
∫ b

a

1
‖c′(t)‖

(
d

dt
〈∂F
∂s

(0, t), c′(t)〉 − 〈∂F
∂s

(0, t),∇tc
′(t)〉

)
dt =

=
∫ b

a

1
‖c′(t)‖

d

dt
〈X(t), c′(t)〉 dt−

∫ b

a

1
‖c′(t)‖

〈X(t),∇tc
′(t)〉 dt,

where X(t) = ∂F
∂s (0, t).

(c) If c(t) is geodesic, then ‖c′(t)‖ is constant, and ∇tc
′(t) = 0. Thus,

l′(0) =
1

‖c′(t)‖

∫ b

a

d

dt
〈X(t), c′(t)〉 dt =

1
‖c′(t)‖

(
〈X(b), c′(b)〉 − 〈X(a), c′(a)〉

)
(d) If F is a proper variation, and c(t) is parametrized by arc lenth, then ‖c′(t)‖ is constant, and
X(a) = X(b) = 0. Therefore,

l′(0) =
1

‖c′(t)‖

∫ b

a

d

dt
〈X(t), c′(t)〉 dt− 1

‖c′(t)‖

∫ b

a
〈X(t),∇tc

′(t)〉 dt =

=
1

‖c′(t)‖
(
〈X(b), c′(b)〉 − 〈X(a), c′(a)〉

)
− 1
‖c′(t)‖

∫ b

a
〈X(t),∇tc

′(t)〉 dt =

= − 1
‖c′(t)‖

∫ b

a
〈X(t),∇tc

′(t)〉 dt

(e) If F is a proper variation and c(t) is geodesic, then we have

l′(0) =
1

‖c′(t)‖
(
〈X(b), c′(b)〉 − 〈X(a), c′(a)〉

)
= 0

(f) Assume c(t) is not a geodesic, but it is parametrized proportionally to arc length. Then at some
point t0 ∈ (a, b) we have ∇tc

′(t) 6= 0. Take a smooth non-negative function ϕ : [a, b] → R≥0 with
ϕ(a) = ϕ(b) = 0, ϕ(t0) 6= 0, and consider a vector fieldX(t) along c(t) defined byX(t) = ϕ(t)∇tc

′(t).

Let F be a proper variation of c with variational vector field X(t), denote by lF (s) the length
functional of F . We want to show that l′F (0) 6= 0. Indeed, by (d) we have

l′F (0) = − 1
‖c′(t)‖

∫ b

a
〈X(t),∇tc

′(t)〉 dt = − 1
‖c′(t)‖

∫ b

a
〈ϕ(t)∇tc

′(t),∇tc
′(t)〉 dt =

= − 1
‖c′(t)‖

∫ b

a
ϕ(t)〈∇tc

′(t),∇tc
′(t)〉 dt = − 1

‖c′(t)‖

∫ b

a
ϕ(t)‖∇tc

′(t)‖2 dt < 0

4.2. Let M , N be smooth manifolds of dimension m and n respectively, and let f : M → N be
a smooth map. Take p ∈M .

(a) Show that the differential dfp : Mp → Nf(p) is a linear map.



Now let M = {(x, y, z) ∈ R3 |x2 + y2 = 1, |z| < 1} be a cylinder, and N = S2 ⊂ R3 be the
unit sphere, both with the metric induced by R3. Define f : M → N by

f(x, y, z) = (x
√

1− z2, y
√

1− z2, z)

Parametrize M and N by cylindrical coordinates (ϕ, z) and spherical coordinates (ϕ, ϑ)
respectively.

(b) Write down the equation of a geodesic on M through (ϕ0, z0) in the direction a ∂
∂ϕ

+ b ∂
∂z

.

(Hint: do not compute anything!)

(c) Compute the matrix of the differential of f in the bases ( ∂
∂ϕ
, ∂

∂z
) and ( ∂

∂ϕ
, ∂

∂ϑ
).

Solution:

(a) This immediately follows from the definition of the differential (or can be easily computed in
coordinates).

We parametrize the cylinderM by (x = cosϕ, y = sinϕ, z), and the sphereN by (x = cosϕ sinϑ, y =
sinϕ sinϑ, z = cosϑ).

(b) It easy to see that the metric on M is Euclidean since the cylinder is obtained from a plane by
a “bending” which does not change its geometry (this can also be easily verified by the calculation
of the metric). Thus, the geodesics are the images of geodesics on the plane, i.e. the curves whose
angle with vertical lines on M is constant. In other words, z should be a linear function of ϕ.
Therefore, such a geodesic is given by

γ(t) = (at+ ϕ0, bt+ z0)

(c) Since z = cosϑ, the function f maps (ϕ, z) to (ϕ, ϑ = arccos z). Thus, the only partial derivative
we need to compute is ∂ϑ

∂z = − 1√
1−z2

= − 1
sin ϑ , and the matrix of the differential df(ϕ,z) is(

1 0
0 − 1

sin ϑ

)
This can be also seen by the definition.

Choose a point (ϕ, z) ∈M . Let

cz(t) = (ϕ, z + t) = (cosϕ, sinϕ, z + t), cϕ(t) = (ϕ+ t, z) = (cos(ϕ+ t), sin(ϕ+ t), z)

Then
∂

∂z
= c′z(0),

∂

∂ϕ
= c′ϕ(0)

Computing d
dt

∣∣∣
t=0

f(cϕ(t)) and d
dt

∣∣∣
t=0

f(cz(t)), we obtain

df(ϕ,z)
∂

∂ϕ
=

d

dt

∣∣∣
t=0

f(cϕ(t)) =
d

dt
(cos(ϕ+ t) sinϑ, sin(ϕ+ t) sinϑ, cosϑ) =

∂

∂ϕ
,

df(ϕ,z)
∂

∂z
=

d

dt

∣∣∣
t=0

f(cz(t)) =
d

dt

∣∣∣
t=0

(cosϕ
√

1− (z + t)2, sinϕ
√

1− (z + t)2, z + t) =

= (cosϕ
−(z + t)√
1− (z + t)2

, sinϕ
−(z + t)√
1− (z + t)2

, 1)
∣∣∣
t=0

= (cosϕ
−z√
1− z2

, sinϕ
−z√
1− z2

, 1) =

= (cosϕ
− cosϑ
sinϑ

, sinϕ
− cosϑ
sinϑ

, 1) = − 1
sinϑ

(cosϕcosϑ, sinϕcosϑ,− sinϑ) = − 1
sinϑ

∂

∂ϑ


