Riemannian Geometry IV, Homework 4 (Week 15)

Due date for starred problems: Tuesday, March 12.

4.1. (\star) First Variation Formula of Length

Let $F:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ be a variation of a differentiable curve $c:[a, b] \rightarrow M$ with $c^{\prime}(t) \neq 0$ for all $t \in[a, b]$ and X be its variational vector field. Let $l=l_{F}:(-\epsilon, \epsilon)$ denote the associated length functional, i.e.,

$$
l(s)=\int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\| d t
$$

(a) Show that

$$
l^{\prime}(0)=\int_{a}^{b} \frac{1}{\left\|c^{\prime}(t)\right\|}\left\langle\left.\nabla_{s}\right|_{s=0} \frac{\partial F}{\partial t}(s, t), c^{\prime}(t)\right\rangle d t
$$

(b) Applying Symmetry Lemma to (a), prove the first variational formula of length:

$$
l^{\prime}(0)=\int_{a}^{b} \frac{1}{\left\|c^{\prime}(t)\right\|} \frac{d}{d t}\left\langle X(t), c^{\prime}(t)\right\rangle d t-\int_{a}^{b} \frac{1}{\left\|c^{\prime}(t)\right\|}\left\langle X(t), \nabla_{t} c^{\prime}(t)\right\rangle d t
$$

Simplify the formula for the cases when
(c) c is a geodesic,
(d) F is a proper variation and c is parametrized proportionally to arc length.
(e) Show that if c is a geodesic and F is a proper variation, then $l^{\prime}(0)=0$.
(f) Let $c:[a, b] \rightarrow M$ be a differentiable curve. Show that if c is parametrized proportionally to arc length, and $l^{\prime}(0)=0$ for every proper variation of c, then c is a geodesic.
Hint: Assume c is not a geodesic. Take a smooth non-negative function $\varphi:[a, b] \rightarrow \mathbb{R}_{\geq 0}$ with $\varphi(a)=\varphi(b)=0$ and consider a vector field along $c \quad X(t)=\varphi(t) \frac{D}{d t} c^{\prime}(t)$. Using the fact that $X(t)$ is a variational vector field for some proper variation F of c, find appropriate φ such that $l_{F}^{\prime}(0) \neq 0$.
4.2. Let M, N be smooth manifolds of dimension m and n respectively, and let $f: M \rightarrow N$ be a smooth map. Take $p \in M$.
(a) Show that the differential $d f_{p}: M_{p} \rightarrow N_{f(p)}$ is a linear map.

Now let $M=\left\{(x, y, z) \in \mathbb{R}^{3}\left|x^{2}+y^{2}=1,|z|<1\right\}\right.$ be a cylinder, and $N=S^{2} \subset \mathbb{R}^{3}$ be the unit sphere, both with the metric induces by \mathbb{R}^{3}. Define $f: M \rightarrow N$ by

$$
f(x, y, z)=\left(x \sqrt{1-z^{2}}, y \sqrt{1-z^{2}}, z\right)
$$

Parametrize M and N by cylindrical coordinates (φ, z) and spherical coordinates (φ, ϑ) respectively.
(b) Write down the equation of a geodesic on M through $\left(\varphi_{0}, z_{0}\right)$ in the direction $a \frac{\partial}{\partial \varphi}+b \frac{\partial}{\partial z}$. (Hint: do not compute anything!)
(c) Compute the matrix of the differential of f in the bases $\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial z}\right)$ and $\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right)$.

