Riemannian Geometry IV, Homework 5 (Week 16)

Due date for starred problems: Tuesday, March 12.

5.1. Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=1\right\}$ be the unit sphere, and $c:[-\pi / 2, \pi / 2] \rightarrow S^{2}$ be a geodesic defined by $c(t)=(\cos t, 0, \sin t)$. Define a vector field $X:[-\pi / 2, \pi / 2] \rightarrow T S^{2}$ along c by

$$
X(t)=(0, \cos t, 0) .
$$

Let ∇_{t} denote covariant derivative on S^{2} along c.
(a) Calculate $\nabla_{t} X(t)$ and $\nabla_{t}^{2} X(t)$.
(b) Show that X satisfies the Jacobi equation.

Solution:

One way to solve the problem is by direct computation: compute Christoffel symbols, and then compute first and second covariant derivative of $X(t)$ and verify the Jacobi equation for $X(t)$.
Another way makes use of the following observation (which is of interest itself). Let $M \subset \mathbb{R}^{3}$ have metric induced from $\mathbb{R}^{3}, p \in M$, and denote by π_{p} the orthogonal projection from \mathbb{R}_{p}^{3} to M_{p}. Let X be a vector field on M, \tilde{X} its extension in \mathbb{R}^{3}, denote by $\tilde{\nabla}$ the Levi-Civita connection on \mathbb{R}^{3} : for $u \in \mathbb{R}_{p}^{3}$

$$
\tilde{\nabla}_{u} \tilde{X}=\lim _{s \rightarrow 0} \frac{\tilde{X}(p+s u)-\tilde{X}(p)}{s}
$$

Then for any $v \in M_{p}$ Levi-Civita connection ∇ on M can be defined by

$$
\begin{equation*}
\nabla_{v} X=\pi_{p}\left(\tilde{\nabla}_{v} \tilde{X}\right) \tag{*}
\end{equation*}
$$

This can be verified in the following way: the expression $\nabla_{v} X$ defined by ($*$) satisfies all the properties of Levi-Civita connection, thus it coincides with Levi-Civita connection on M by the uniqueness property.
Now let us apply the observation above to our problem.
We obtain

$$
\nabla_{t} X(t)=\left(\frac{d}{d t}(0, \cos t, 0)\right)^{\perp}=(0,-\sin t, 0)^{\perp}
$$

where the orthogonal projection v^{\perp} of v onto S_{p}^{2} is taken at the point $c(t)=(\cos t, 0, \sin t)$. Since $(0,-\sin t, 0) \perp c(t)$, we get

$$
\nabla_{t} X(t)=(0,-\sin t, 0)
$$

Similarly, we conclude that

$$
\nabla_{t}^{2} X(t)=(0,-\cos t, 0)=-X(t) .
$$

Now, since S^{2} has constant curvature 1, we make use of the result of Problem 2.1 to obtain (cf. Problem 5.2(a))

$$
R\left(c^{\prime}(t), X(t)\right) c^{\prime}(t)=\left\langle c^{\prime}(t), c^{\prime}(t)\right\rangle X(t)+\left\langle X(t), c^{\prime}(t)\right\rangle c^{\prime}(t)=1 \cdot X(t)+0 \cdot c^{\prime}(t)=X(t)
$$

Bringing everything together, we conclude that

$$
\nabla_{t}^{2} X(t)+R\left(c^{\prime}(t), X(t)\right) c^{\prime}(t)=-X(t)+X(t)=0
$$

i.e., X satisfies the Jacobi equation.

5.2. (\star) Jacobi fields on manifold of constant curvature.

Let M be a Riemannian manifold of constant sectional curvature K, and $c:[0,1] \rightarrow M$ be a geodesic satisfying $\left\|c^{\prime}\right\|=1$. Let $J:[0,1] \rightarrow T M$ be an orthogonal Jacobi field along c (i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle=0$ for every $\left.t \in[0,1]\right)$.
(a) Show that $R\left(c^{\prime}, J\right) c^{\prime}=K J$. Hint: You may use result of Problem 2.1.
(b) Let $Z_{1}, Z_{2}:[0,1] \rightarrow T M$ be parallel vector fields along c with $Z_{1}(0)=J(0)$, $Z_{2}(0)=\nabla_{t} J(0)$. Show that

$$
J(t)= \begin{cases}\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t) & \text { if } K>0 \\ Z_{1}(t)+t Z_{2}(t) & \text { if } K=0 \\ \cosh (t \sqrt{-K}) Z_{1}(t)+\frac{\sinh (t \sqrt{-K})}{\sqrt{-K}} Z_{2}(t) & \text { if } K<0\end{cases}
$$

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at $t=0$ is the same as for $J(t)$, and then use uniqueness (Corollary 3.7).

Solution:

(a) We conclude from Problem 2.1 that

$$
R\left(v_{1}, v_{2}\right) v_{3}=K\left(\left\langle v_{1}, v_{3}\right\rangle v_{2}-\left\langle v_{2}, v_{3}\right\rangle v_{1}\right) .
$$

This implies

$$
R\left(c^{\prime}, J\right) c^{\prime}=K\left(\left\langle c^{\prime}, c^{\prime}\right\rangle J-\left\langle J, c^{\prime}\right\rangle c^{\prime}\right) .
$$

Since $\left\|c^{\prime}\right\|^{2}=1$ and $J \perp c^{\prime}$, we obtain

$$
R\left(c^{\prime}, J\right) c^{\prime}=K J
$$

(b) We only consider the case $K>0$, all other cases are similar. The vector field

$$
J_{1}(t)=\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t)
$$

satisfies $J_{1}(0)=Z_{1}(0)=J(0)$ and

$$
\nabla_{t} J_{1}(t)=-\sqrt{K} \sin (t \sqrt{K}) Z_{1}(t)+\cos (t \sqrt{K}) Z_{2}(t)
$$

which implies $\nabla_{t} J_{1}(0)=Z_{2}(0)=\nabla_{t} J(0)$. Obviously, we have

$$
\nabla_{t}^{2} J_{1}(t)=-K \cos (t \sqrt{K}) Z_{1}(t)-\sqrt{K} \sin (t \sqrt{K}) Z_{2}(t)=-K J_{1}(t),
$$

and therefore we obtain

$$
\nabla_{t}^{2} J_{1}(t)+K J_{1}(t)=0
$$

Now we want to apply (a) to say that the equation above is the Jacobi equation. For this, we need to show that the field J_{1} is orthogonal. It suffices to demonstrate that both Z_{1} and Z_{2} are orthogonal.
Indeed, since Z_{i} are parallel, $\left\langle Z_{i}, c^{\prime}\right\rangle$ is constant, so we compute the values of $\left\langle Z_{i}(t), c^{\prime}(t)\right\rangle$ at $t=0$. We have

$$
\left\langle Z_{1}(0), c^{\prime}(0)\right\rangle=\left\langle J(0), c^{\prime}(0)\right\rangle=0
$$

since $J(t)$ is orthogonal, and

$$
\left\langle Z_{2}(0), c^{\prime}(0)\right\rangle=\left\langle\nabla_{t} J(0), c^{\prime}(0)\right\rangle=0
$$

since $J(t)$ is orthogonal, which completes the proof.

