Riemannian Geometry IV, Homework 5 (Week 16)

Due date for starred problems: Tuesday, March 12.
5.1. Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=1\right\}$ be the unit sphere, and $c:[-\pi / 2, \pi / 2] \rightarrow S^{2}$ be a geodesic defined by $c(t)=(\cos t, 0, \sin t)$. Define a vector field $X:[-\pi / 2, \pi / 2] \rightarrow T S^{2}$ along c by

$$
X(t)=(0, \cos t, 0)
$$

Let ∇_{t} denote covariant derivative on S^{2} along c.
(a) Calculate $\nabla_{t} X(t)$ and $\nabla_{t}^{2} X(t)$.
(b) Show that X satisfies the Jacobi equation.

5.2. (\star) Jacobi fields on manifold of constant curvature.

Let M be a Riemannian manifold of constant sectional curvature K, and $c:[0,1] \rightarrow M$ be a geodesic satisfying $\left\|c^{\prime}\right\|=1$. Let $J:[0,1] \rightarrow T M$ be an orthogonal Jacobi field along c (i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle=0$ for every $\left.t \in[0,1]\right)$.
(a) Show that $R\left(c^{\prime}, J\right) c^{\prime}=K J . \quad$ Hint: You may use result of Problem 2.1.
(b) Let $Z_{1}, Z_{2}:[0,1] \rightarrow T M$ be parallel vector fields along c with $Z_{1}(0)=J(0)$, $Z_{2}(0)=\nabla_{t} J(0)$. Show that

$$
J(t)= \begin{cases}\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t) & \text { if } K>0 \\ Z_{1}(t)+t Z_{2}(t) & \text { if } K=0 \\ \cosh (t \sqrt{-K}) Z_{1}(t)+\frac{\sinh (t \sqrt{-K})}{\sqrt{-K}} Z_{2}(t) & \text { if } K<0\end{cases}
$$

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at $t=0$ is the same as for $J(t)$, and then use uniqueness (Corollary 3.7).

