Riemannian Geometry IV, Homework 6 (Week 17)

Due date for starred problems: Tuesday, March 12.

6.1. (\star) Let M be a Riemannian manifold of non-positive sectional curvature.
(a) Let $c:[a, b] \rightarrow M$ be a differentiable curve and J be a Jacobi field along c. Let $f(t)=\|J(t)\|^{2}$. Show that $f^{\prime \prime}(t) \geq 0$, i.e., f is a convex function.
(b) Derive from (a) that M does not admit conjugate points.

Solution:

(a) We have

$$
f^{\prime}(t)=\left.\frac{d}{d t}\right|_{t=0}\langle J(t), J(t)\rangle=2\left\langle\nabla_{t} J(t), J(t)\right\rangle
$$

and

$$
f^{\prime \prime}(t)=2\left(\left\langle\nabla_{t}^{2} J(t), J(t)\right\rangle+\left\|\nabla_{t} J(t)\right\|^{2}\right) .
$$

Using Jacobi's equation, we conclude

$$
f^{\prime \prime}(t)=2\left(-\left\langle R\left(c^{\prime}(t), J(t)\right) c^{\prime}(t), J(t)\right\rangle+\left\|\nabla_{t} J(t)\right\|^{2}\right) .
$$

We have $\left\langle R\left(c^{\prime}(t), J(t)\right) c^{\prime}(t), J(t)\right\rangle=0$ if $J(t), c^{\prime}(t)$ are linear dependent and, otherwise, for $\Pi=$ $\operatorname{span}\left(J(t), c^{\prime}(t)\right) \subset M_{c(t)}$,

$$
\left\langle R\left(c^{\prime}(t), J(t)\right) c^{\prime}(t), J(t)\right\rangle=K(\Pi)\left(\|J(t)\|^{2}\left\|c^{\prime}(t)\right\|^{2}-\left(\left\langle J(t), c^{\prime}(t)\right\rangle\right)^{2}\right) \leq 0
$$

since sectional curvature is non-positive (and using Cauchy-Schwarz inequality). This shows that $f^{\prime \prime}(t)$, as a sum of two non-negative terms, is greater than or equal to zero.
(b) If there were a conjugate point $q=c\left(t_{2}\right)$ to a point $p=c\left(t_{1}\right)$ along the geodesic c, then we would have a non-vanishing Jacobi field J along c with $J\left(t_{1}\right)=0$ and $J\left(t_{2}\right)=0$. This would imply that the convex, non-negative function $f(t)=\|J(t)\|^{2}$ would have zeros at $t=t_{1}$ and $=t_{2}$. This would force f to vanish identically on the interval $\left[t_{1}, t_{2}\right]$, which would imply that J vanishes as well, which leads to a contradiction.

6.2. Jacobi fields and conjugate points on locally symmetric spaces

A Riemannian manifold (M, g) is called a locally symmetric space if $\nabla R=0$ (see Problem 2.3). Let (M, g) be an n-dimensional locally symmetric space and $c:[0, \infty) \rightarrow M$ be a geodesic with $p=c(0)$ and $v=c^{\prime}(0) \in M_{p}$. Prove the following facts:
(a) Let X, Y, Z be parallel vector fields along c. Show that $R(X, Y) Z$ is also parallel.
(b) Let $K_{v} \in \operatorname{Hom}\left(M_{p}, M_{p}\right)$ be the curvature operator, defined by

$$
K_{v}(w)=R(v, w) v .
$$

Show that K_{v} is self-adjoint, i.e.,

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle
$$

for every pair of vectors $w_{1}, w_{2} \in M_{p}$.
(c) Choose an orthonormal basis $w_{1}, \ldots, w_{n} \in M_{p}$ that diagonalizes K_{v}, i.e.,

$$
K_{v}\left(w_{i}\right)=\lambda_{i} w_{i} .
$$

(such a basis exists since K_{v} is self-adjoint). Let W_{1}, \ldots, W_{n} be the parallel vector fields along c with $W_{i}(0)=w_{i}$. Show that, for all $t \in[0, \infty)$,

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t)
$$

(d) Let $J(t)=\sum_{i} J_{i}(t) W_{i}(t)$ be a Jacobi field along c. Show that Jacobi's equation translates into

$$
J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, \quad \text { for } i=1, \ldots, n
$$

(e) Show that the conjugate points of p along c are given by $c\left(\pi k / \sqrt{\lambda_{i}}\right)$, where k is any positive integer and λ_{i} is a positive eigenvalue of K_{v}.

Solution:

(a) We know that $\nabla R=0$. Let ∇_{t} denote covariant derivative along c. Then we have, for parallel vector fields X, Y, Z along c that

$$
\begin{aligned}
& 0=\nabla R\left(X, Y, Z, c^{\prime}\right)(t)=\nabla_{t} R(X(t), Y(t)) Z(t)- \\
&-R(\underbrace{\nabla_{t} X(t)}_{=0}, Y(t)) Z(t)-R(X(t), \underbrace{\nabla_{t} Y(t)}_{=0}) Z(t)-R(X(t), Y(t)) \underbrace{\nabla_{t} Z(t)}_{=0}= \\
&=\nabla_{t} R(X(t), Y(t)) Z(t) .
\end{aligned}
$$

This shows that $R(X, Y) Z$ is parallel.
(b) The symmetries of R yield

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle R\left(v, w_{1}\right) v, w_{2}\right\rangle=\left\langle R\left(v, w_{2}\right) v, w_{1}\right\rangle=\left\langle K_{v}\left(w_{2}\right), w_{1}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle .
$$

(c) Since K_{v} is self-adjoint, we can find an orthonormal basis $w_{1}, \ldots, w_{n} \in M_{p}$ with $K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}$. We know, by (a), that $K_{c^{\prime}(t)}\left(W_{i}(t)\right)=R\left(c^{\prime}(t), W_{i}(t)\right) W_{i}(t)$ is parallel and, since $K_{c^{\prime}(0)}\left(W_{i}(0)\right)=$ $K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}$, we must have

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t),
$$

since parallel vector fields V along c are uniquely determined by their initial values $V(0) \in M_{p}$.
(d) Let J be a Jacobi field along c. Then J satisfies the Jacobi equation

$$
\nabla_{t}^{2} J+R\left(c^{\prime}, J\right) c^{\prime}=0
$$

Since W_{1}, \ldots, W_{n} form a parallel basis along c, we obtain, by taking inner product with W_{i} :

$$
\begin{aligned}
& 0=\left\langle\nabla_{t}^{2} J, W_{i}\right\rangle+\left\langle R\left(c^{\prime}, J\right) c^{\prime}, W_{i}\right\rangle= \\
& \qquad=\frac{d^{2}}{d t^{2}} \sum_{j} J_{j}\left\langle W_{j}, W_{i}\right\rangle+\sum_{j} J_{j}\left\langle R\left(c^{\prime}, W_{j}\right) c^{\prime}, W_{i}\right\rangle= \\
& \quad=J_{i}^{\prime \prime}+\sum_{j} J_{j} \lambda_{j}\left\langle W_{j}, W_{i}\right\rangle=J_{i}^{\prime \prime}+\lambda_{i} J_{i} .
\end{aligned}
$$

(e) The unique solution of $J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, J_{i}(0)=0$ (up to scalar multiples) is given by

$$
J_{i}(t)= \begin{cases}\sin \left(t \sqrt{\lambda_{i}}\right) & \text { if } \lambda_{i}>0 \\ t & \text { if } \lambda_{i}=0 \\ \sinh \left(t \sqrt{-\lambda_{i}}\right) & \text { if } \lambda_{i}<0\end{cases}
$$

So J_{i} has zeros for positive t only if $\lambda_{i}>0$, and these are precisely at $t=\pi k / \sqrt{\lambda_{i}}$. The corresponding Jacobi fields with $J(0)=0$ and $\nabla_{t} J(0)=w_{i}$ produce the conjugate points $c\left(\pi k / \sqrt{\lambda_{i}}\right)$.

