## Riemannian Geometry IV, Homework 7 (Week 18)

Due date for starred problems: Tuesday, March 12.
7.1. (a) Let $c(t)$ be a geodesic, and $c\left(t_{0}\right)$ is conjugate to $c\left(t_{1}\right)$. Let $J$ be any Jacobi field along $c$ vanishing at $t_{0}$ and $t_{1}$. Show that $J$ is orthogonal, i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle \equiv 0$.
(b) Show that the dimension of the space $J_{c}^{\perp}$ of orthogonal vector fields along $c$ is $2 n-2$.

## Solution:

(a) We have proved in class that the function $t \rightarrow\left\langle J(t), c^{\prime}(t)\right\rangle$ is linear. Since it is equal to zero at two points $t_{0}$ and $t_{1}$, it vanishes everywhere, so $J(t)$ is orthogonal.
(b) Recall that $J(t)$ is orthogonal if and only if both $\left\langle J(0), c^{\prime}(0)\right\rangle$ and $\left\langle\nabla_{t} J(0), c^{\prime}(0)\right\rangle$ vanish. Each of these equations defines a codimension one subspace in $M_{p}$, so the dimension of $J_{c}^{\perp}=(n-1)+$ $(n-1)=2 n-2$.
7.2. ( $\star$ ) Let $c:[0,1] \rightarrow M$ be a geodesic, and $J$ be a Jacobi field along $c$. Denote $c(0)=p, c^{\prime}(0)=v$. Define a curve $\gamma(s)$,

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \quad \gamma(0)=p, \gamma^{\prime}(0)=J(0)
$$

Define also a vector field $V(s) \in \Gamma\left(\gamma^{-1} T M\right)$, such that

$$
V(0)=v, \quad \nabla_{s} V(0)=\nabla_{t} J(0)
$$

and a variation $F(s, t)=\exp _{\gamma(s)} t V(s)$.
(a) Show that $F(s, t)$ is a geodesic variation of $c(t)$.
(b) Show that $\frac{\partial F}{\partial s}(0,0)=\gamma^{\prime}(0)=J(0)$, and $\nabla_{t} \frac{\partial F}{\partial s}(0,0)=\nabla_{s} V(0)=\nabla_{t} J(0)$.
(c) Deduce from (a) and (b) that every Jacobi field along a geodesic $c(t)$ is a variational vector field of some geodesic variation of $c$.

## Solution:

(a) By definition of exponential map, for given $s$ the curve $t \rightarrow \exp _{\gamma(s)} t V(s)$ is geodesic.
(b) We have

$$
\frac{\partial F}{\partial s}(0,0)=\left.\left.\frac{\partial}{\partial s}\right|_{s=0} \exp _{\gamma(s)} t V(s)\right|_{t=0}=\left.\frac{\partial}{\partial s}\right|_{s=0} \exp _{\gamma(s)}(0)=\left.\frac{\partial}{\partial s}\right|_{s=0} \gamma(s)=\gamma^{\prime}(0)=J(0),
$$

and

$$
\nabla_{t} \frac{\partial F}{\partial s}(0,0)=\left.\left.\nabla_{s}\right|_{s=0} \frac{\partial F}{\partial t}\right|_{t=0}(s, t)=\left.\nabla_{s}\right|_{s=0} V(s)=\nabla_{s} V(0)=\nabla_{t} J(0)
$$

(c) According to (a), the variation $F$ is geodesic, thus its variational vector field $\frac{\partial F}{\partial s}(0, t)$ is Jacobi. By (b), $\frac{\partial F}{\partial s}(0,0)=J(0)$, and $\nabla_{t} \frac{\partial F}{\partial s}(0,0)=\nabla_{t} J(0)$, which means that $\frac{\partial F}{\partial s}(0, t)=J(t)$ due to uniqueness theorem.
7.3. Let $c:[a, b] \rightarrow M$ be a geodesic. For $t \in[a, b]$, denote by $J_{c}^{t}$ the space of Jacobi fields along $c$ vanishing at $t$. Let $a \leq t_{0}<t_{1} \leq b$, and define a map $\psi: J_{c}^{t_{0}} \rightarrow M_{c\left(t_{1}\right)}$ by $\psi(J)=J\left(t_{1}\right)$.
(a) Show that $\psi$ is linear.

Now assume that $c\left(t_{0}\right)$ is not conjugate to $c\left(t_{1}\right)$.
(b) Show that $\psi$ is an isomorphism.
(c) Show that for any $u_{1} \in M_{c\left(t_{1}\right)}$ there exists a unique $J \in J_{c}^{t_{0}}$ such that $J\left(t_{1}\right)=u_{1}$.
(d) Using the arguments similar to ones from (a)-(c), show that for any $u_{0} \in M_{c\left(t_{0}\right)}$ there exists a unique $J \in J_{c}^{t_{1}}$ such that $J\left(t_{0}\right)=u_{0}$.
(e) Deduce from (c) and (d) that if $c\left(t_{0}\right)$ is not conjugate to $c\left(t_{1}\right)$, then for any $u_{0} \in M_{c\left(t_{0}\right)}$ and $u_{1} \in M_{c\left(t_{1}\right)}$ there exists a unique Jacobi field $J$ along $C$ such that $J\left(t_{0}\right)=u_{0}$ and $J\left(t_{1}\right)=u_{1}$.

## Solution:

(a) $\psi\left(J_{1}+J_{2}\right)=\left(J_{1}+J_{2}\right)\left(t_{1}\right)=J_{1}\left(t_{1}\right)+J_{2}\left(t_{1}\right)=\psi\left(J_{1}\right)+\psi\left(J_{2}\right)$.
(b) If the kernel of $\psi$ contains a non-zero vector, then $c\left(t_{1}\right)$ is conjugate to $c\left(t_{0}\right)$, which is not the case. Thus, $\psi$ is a monomorphism. Note that the dimensions of both $J_{c}^{t_{0}}$ and $M_{c\left(t_{1}\right)}$ are equal to $n$. Therefore, $\psi$ is a monomorphism of vector spaces of the same dimension, which implies that it is an isomorphism.
(c),(d) This follows directly from (b).
(e) Let $J_{1} \in J_{c}^{t_{0}}$ such that $J_{1}\left(t_{1}\right)=u_{1}$, and $J_{2} \in J_{c}^{t_{1}}$ such that $J_{2}\left(t_{0}\right)=u_{0}$. Then for $J=J_{1}+J_{2}$ we have $J\left(t_{0}\right)=u_{0}$ and $J\left(t_{1}\right)=u_{1}$.
Assume there is $J^{\prime} \neq J$ with the same properties. Then for $J_{1}^{\prime}=J^{\prime}-J_{2}$ we have $J_{1}^{\prime}\left(t_{0}\right)=0$ and $J_{1}^{\prime}\left(t_{1}\right)=u_{1}$, so $J_{1}^{\prime}=J_{1}$. Hence, $J^{\prime}=J$.

