Riemannian Geometry IV, Homework 7 (Week 18)

Due date for starred problems: Tuesday, March 12.

- **7.1.** (a) Let c(t) be a geodesic, and $c(t_0)$ is conjugate to $c(t_1)$. Let J be any Jacobi field along c vanishing at t_0 and t_1 . Show that J is orthogonal, i.e. $\langle J(t), c'(t) \rangle \equiv 0$.
 - (b) Show that the dimension of the space J_c^{\perp} of orthogonal vector fields along c is 2n-2.
- **7.2.** (*) Let $c : [0,1] \to M$ be a geodesic, and J be a Jacobi field along c. Denote c(0) = p, c'(0) = v. Define a curve $\gamma(s)$,

$$\gamma: (-\varepsilon, \varepsilon) \to M, \qquad \gamma(0) = p, \gamma'(0) = J(0)$$

Define also a vector field $V(s) \in \Gamma(\gamma^{-1}TM)$, such that

$$V(0) = v, \qquad \nabla_s V(0) = \nabla_t J(0),$$

and a variation $F(s,t) = exp_{\gamma(s)}tV(s)$.

- (a) Show that F(s,t) is a geodesic variation of c(t).
- (b) Show that $\frac{\partial F}{\partial s}(0,0) = \gamma'(0) = J(0)$, and $\nabla_t \frac{\partial F}{\partial s}(0,0) = \nabla_s V(0) = \nabla_t J(0)$.

(c) Deduce from (a) and (b) that every Jacobi field along a geodesic c(t) is a variational vector field of some geodesic variation of c.

7.3. Let c: [a, b] → M be a geodesic. For t ∈ [a, b], denote by J^t_c the space of Jacobi fields along c vanishing at t. Let a ≤ t₀ < t₁ ≤ b, and define a map ψ : J^{t₀}_c → M_{c(t₁)} by ψ(J) = J(t₁).
(a) Show that ψ is linear.

Now assume that $c(t_0)$ is not conjugate to $c(t_1)$.

- (b) Show that ψ is an isomorphism.
- (c) Show that for any $u_1 \in M_{c(t_1)}$ there exists a unique $J \in J_c^{t_0}$ such that $J(t_1) = u_1$.

(d) Using the arguments similar to ones from (a)–(c), show that for any $u_0 \in M_{c(t_0)}$ there exists a unique $J \in J_c^{t_1}$ such that $J(t_0) = u_0$.

(e) Deduce from (c) and (d) that if $c(t_0)$ is not conjugate to $c(t_1)$, then for any $u_0 \in M_{c(t_0)}$ and $u_1 \in M_{c(t_1)}$ there exists a unique Jacobi field J along C such that $J(t_0) = u_0$ and $J(t_1) = u_1$.