Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (\star) Consider the upper half-plane $M=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ with the metric

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{y}
\end{array}\right)
$$

(a) Show that all the Christoffel symbols are zero except $\Gamma_{22}^{2}=-\frac{1}{2 y}$.
(b) Show that the vertical segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ is a geodesic curve when parametrized proportionally to arc length.
(c) Show that the length of the segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ tends to 2 as ε tends to zero.
(d) Show that (M, g) is not geodesically complete.

Solution:

(a) We use the formula

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m=1}^{n} g^{k m}\left(g_{i m, j}+g_{j m, i}-g_{i j, m}\right)
$$

The only non-zero $g_{i j, k}$ is $g_{22,2}=-1 / y^{2}$. Thus, the only non-zero Christoffel symbol is

$$
\Gamma_{22}^{2}=\frac{1}{2} g^{22}\left(g_{22,2}\right)=-\frac{1}{2 y}
$$

(b) Solution 1. Parametrize the segment by $c(t)=(0, \alpha(t))$, where $\alpha(0)=\varepsilon, \alpha(1)=1$, and $\alpha(t)$ is increasing. Then $c^{\prime}(t)=\alpha^{\prime}(t) \frac{\partial}{\partial y}$, and we obtain

$$
\left\|c^{\prime}(t)\right\|=\left|\alpha^{\prime}(t)\right|\left\|\frac{\partial}{\partial y}\right\|=\frac{\alpha^{\prime}(t)}{\sqrt{y}}=\frac{\alpha^{\prime}(t)}{\sqrt{\alpha(t)}}
$$

Since we want $c(t)$ to be parametrized proportionally to arc length, we have

$$
\left\|c^{\prime}(t)\right\|=\frac{\alpha^{\prime}(t)}{\sqrt{\alpha(t)}}=k
$$

for some $k \in \mathbb{R}$, so

$$
\begin{equation*}
\alpha^{\prime}(t)=k \sqrt{\alpha(t)} . \tag{*}
\end{equation*}
$$

To show that $c(t)$ is geodesic, we need to show that $\frac{D}{d t} c^{\prime}(t)=0$, where $\frac{D}{d t}$ denotes covariant derivative along $c(t)$. Computing, we obtain

$$
\begin{aligned}
\frac{D}{d t} c^{\prime}(t)=\frac{D}{d t} & \left(\alpha^{\prime}(t) \frac{\partial}{\partial y}\right)=\alpha^{\prime \prime}(t) \frac{\partial}{\partial y}+\alpha^{\prime}(t) \frac{D}{d t} \frac{\partial}{\partial y}= \\
& =\alpha^{\prime \prime}(t) \frac{\partial}{\partial y}+\alpha^{\prime}(t) \nabla_{\alpha^{\prime}(t) \frac{\partial}{\partial y}} \frac{\partial}{\partial y}=\alpha^{\prime \prime}(t) \frac{\partial}{\partial y}+{\alpha^{\prime}}^{2}(t)\left(-\frac{1}{2 y} \frac{\partial}{\partial y}\right)=\left(\alpha^{\prime \prime}(t)-\frac{\alpha^{\prime 2}(t)}{2 \alpha(t)}\right) \frac{\partial}{\partial y}
\end{aligned}
$$

Applying $(*)$, we obtain $\alpha^{\prime \prime}(t)=k^{2} / 2$, and $\alpha^{\prime 2}(t) / 2 \alpha(t)=k^{2} / 2$ as well, so $\frac{D}{d t} c^{\prime}(t)=0$.

Solution 2. (based on symmetry and uniqueness).
Consider the map $R: M \rightarrow M, R(x, y)=(-x, y)$ (reflection with respect to the y-axis). As the metric $g_{i j}$ depends on y only (which is preserved by R), R is an isometry. (Indeed, the differential of this map is the diagonal matrix $D R=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, so $D R\left(\frac{\partial}{\partial x}\right)=-\frac{\partial}{\partial x}$ and $D R\left(\frac{\partial}{\partial y}\right)=\frac{\partial}{\partial y}$. Hence, $\langle D R(v), D R(w)\rangle=\langle v, w\rangle$ for any $v, w \in T_{(x, y)} M$.) Thus, R takes each geodesic to a geodesic.
Now, let $\gamma(t)$ be the geodesic such that $\gamma(0)=(0,1), \gamma^{\prime}(0)=(0,-1)$. Suppose that γ does not belong entirely to the vertical line, i.e. for some t_{0} the point $\gamma\left(t_{0}\right)$ has non-zero y-coordinate (say, positive). Then the geodesic $R(\gamma(t))$ obtained from γ by the reflection R does not coincide with $\gamma(t)$ (it has strictly negative y-coordinate at t_{0}) and satisfies the same initial conditions as $\gamma(t)$. This contradicts the uniqueness of a geodesic starting from a given point in a given direction.
(c)

$$
\int_{0}^{1} \frac{\alpha^{\prime}(t)}{\sqrt{\alpha(t)}} d t=\int_{0}^{1} 2(\sqrt{\alpha(t)})^{\prime} d t=2 \sqrt{\alpha(1)}-2 \sqrt{\alpha(0)}=2-2 \varepsilon
$$

which tends to 2 as ε tends to zero.
(d) It follows from (c) that the sequence $1 / n$ is a Cauchy sequence, but does not converge in M. Thus, (M, g) is not complete, and by the Hopf - Rinow theorem it is not geodesically complete.
1.2. (\star) Let $H_{3}(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$
\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where $\left.x_{1}, x_{2}, x_{3} \in \mathbb{R}\right)$.
(a) Show that $H_{3}(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the Heisenberg group.
(b) Show that the Heisenberg group is a Lie group. What is its dimension?
(c) Prove that the matrices

$$
X_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis of the tangent space $T_{e} H_{3}(\mathbb{R})$ of the group $H_{3}(\mathbb{R})$ at the neutral element e.
(d) For each $k=1,2,3$, find an explicit formula for the curve $c_{k}: \mathbb{R} \rightarrow H_{3}(\mathbb{R})$ given by $c_{k}(t)=$ $\operatorname{Exp}\left(t X_{k}\right)$.

Solution:

(a) It is an easy computation to check the axioms of a group (i.e H_{3} is closed under multiplication, there exists an obvious neutral element (3×3 identity matrix), there is an inverse element for each $h \in H_{3}$, associativity works as always in matrix groups).
(b) The matrix elements $\left(x_{1}, x_{2}, x_{3}\right)$ give a global chart on H_{3}, so H_{3} is a smooth 3 -manifold. The multiplication $g_{1} g_{2}$ can be written as $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}+x_{1} y_{3}, x_{3}+y_{3}\right)$, and the inverse element g_{1}^{-1} can be written as $\left(x_{1}, x_{2}, x_{3}\right)^{-1}=\left(-x_{1}, x_{1} x_{3}-x_{2},-x_{3}\right)$, which are smooth maps $H_{3} \times H_{3} \rightarrow H_{3}$ and $H_{3} \rightarrow H_{3}$ respectively. Hence, H_{3} is a Lie group.
(c) To see that the matrices X_{i} belong to $T_{e} H_{3}$ consider the paths $c_{i}(t)=I+X_{i} t \in H_{3}$. By definition, $\frac{\partial}{\partial x_{i}}=c_{i}^{\prime}(t)=X_{i}$. So, $\left\{X_{1}, X_{2}, X_{3}\right\}$ is the basis of $T_{e} H_{3}$ since $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\}$ is a basis.
(d) Since $X_{i}^{2}=0$ for $i=1,2,3$ we see that $\operatorname{Exp}\left(t X_{i}\right)=I+X_{i} t$.
1.3. Let G, H be Lie groups. A map $\varphi: G \rightarrow H$ is called a homomorphism (of Lie groups) if it is smooth and it is a homomorphism of abstract groups.
Denote by $\mathfrak{g}, \mathfrak{h}$ Lie algebras of G and H, and let $\varphi: G \rightarrow H$ be a homomorphism.
(a) Show that the differential $D \varphi(e): T_{e} G \rightarrow T_{e} H$ induces a linear map $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$, where $D \varphi(X)$ for $X \in \mathfrak{g}$ is the unique left-invariant vector field on H such that $D \varphi(X)(e)=D \varphi(X(e))$.
(b) Show that for any $g \in G$

$$
L_{\varphi(g)} \circ \varphi=\varphi \circ L_{g}
$$

(c) Show that for any $X \in \mathfrak{g}$ and $g \in G$

$$
D \varphi(X)(\varphi(g))=D \varphi(X(g))
$$

(d) Show that $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a homomorphism of Lie algebras, i.e. a linear map satisfying $D \varphi([X, Y])=[D \varphi(X), D \varphi(Y)]$ for any $X, Y \in \mathfrak{g}$.

Solution:

(a) The map $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ defined by $D \varphi(X)(e)=D \varphi(X(e))$ is clearly linear.
(b) Since φ is a homomorphism, we have for $h \in G$

$$
\left(L_{\varphi(g)} \circ \varphi\right)(h)=\varphi(g) \varphi(h)=\varphi(g h)=\varphi\left(L_{g}(h)\right)=\varphi \circ L_{g}(h)
$$

(c) Since $D \varphi(X) \in \mathfrak{h}$, we have

$$
\begin{aligned}
D \varphi(X)(\varphi(g))=D L_{\varphi(g)}(e) D \varphi(X)(e)=D L_{\varphi(g)}(e) & D \varphi(X(e))=D\left(L_{\varphi(g)} \circ \varphi\right)(e) X(e)= \\
& =D\left(\varphi \circ L_{g}\right) X(e)=D \varphi\left(D L_{g} X(e)\right)=D \varphi(X(g))
\end{aligned}
$$

(d) Reproducing the proof of Prop. 6.8 (substituting L_{g} by φ and making use of (c) and Lemma 6.7), we have for every $f \in C^{\infty}(H)$ and $g \in G$

$$
\begin{aligned}
(D \varphi \circ[X, Y](g))(f)=[X, Y](g)(f \circ \varphi) & =X(g) Y(f \circ \varphi)-Y(g) X(f \circ \varphi)= \\
& =X(g)((D \varphi \circ Y)(f))-Y(g)((D \varphi \circ X)(f))= \\
& =X(g)(D \varphi(Y)(f) \circ \varphi)-Y(g)(D \varphi(X)(f) \circ \varphi)= \\
& =D \varphi(X(g))(D \varphi(Y)(f))-D \varphi(Y(g))(D \varphi(X)(f))= \\
& =D \varphi(X)(\varphi(g))(D \varphi(Y)(f))-D \varphi(Y)(\varphi(g))(D \varphi(X)(f))= \\
& =[D \varphi(X), D \varphi(Y)](\varphi)(g))(f)
\end{aligned}
$$

In particular, taking $g=e$, we have $(D \varphi \circ[X, Y])(e)=[D \varphi(X), D \varphi(Y)](e)$. According to (c), we have $D \varphi([X, Y]) \circ \varphi=D \varphi \circ[X, Y]$, so $(D \varphi \circ[X, Y])(e)=D \varphi([X, Y])(e)$. Therefore, we have two left-invariant vector fields $D \varphi([X, Y])$ and $[D \varphi(X), D \varphi(Y)]$ coinciding at e, which implies they are equal.

