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Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (x) Consider the upper half-plane M = {(z,y) € R? |y > 0} with the metric

(9i5) = <(1) g)

(a) Show that all the Christoffel symbols are zero except I'3, = —

—5-
(b) Show that the vertical segment z = 0, ¢ < y < 1 with 0 < ¢ < 1 is a geodesic curve when
parametrized proportionally to arc length.

(c) Show that the length of the segment x =0, e <y < 1 with 0 < & < 1 tends to 2 as € tends to
Zero.

(d) Show that (M, g) is not geodesically complete.
Solution:

(a) We use the formula

1 n
I‘fj =3 Z gkm(gim,j + Gim,i — Gij,m)

m=1
The only non-zero g;; x is ga2.2 = —1/y?. Thus, the only non-zero Christoffel symbol is
1 1
T2 — 422 _
22 29 (922,2) %

(b) Solution 1. Parametrize the segment by c(t) = (0, a(t)), where «(0) = €, a(1) = 1, and «(t) is increasing.
Then ¢(t) = o/ (t)-Z, and we obtain

oy’
0 o/ (¢) o (t)
IOl =l @O 51l = =
Y VY a(t)
Since we want c¢(t) to be parametrized proportionally to arc length, we have
o' (1)
I @)1l = =k
a(t)

for some k € R, so
(%) o/ (t) = kr/a(t).

To show that c(t) is geodesic, we need to show that £¢/(t) = 0, where £ denotes covariant derivative
along ¢(t). Computing, we obtain

D, D(,. 0 o @, D
%c(t) == (a (t)ay> =d't)—+dt)—=— =

_ M 7] / . g 12 10 _ " O/z(t) 9

Applying (*), we obtain o () = k2/2, and o/*(t)/20(t) = k2/2 as well, so Do) =o.




(d)

Solution 2. (based on symmetry and uniqueness).

Consider the map R : M — M, R(z,y) = (—x,y) (reflection with respect to the y-axis). As the
metric g;; depends on y only (which is preserved by R), R is an isometry. (Indeed, the differential

of this map is the diagonal matrix DR = -1 O), so DR(Z) = —2 and DR(S%) = 2 Hence,

0 1 ox oy
V), w)) = (v, w) for any v,w € T\, . us, R takes each geodesic to a geodesic.
DR(v), DR f T(yy)M.) Thus, R takes each geodesi geodesi

Now, let v(t) be the geodesic such that v(0) = (0, 1), v/(0) = (0,—1). Suppose that v does not belong
entirely to the vertical line, i.e. for some ¢y the point v(¢g) has non-zero y-coordinate (say, positive).
Then the geodesic R(y(t)) obtained from « by the reflection R does not coincide with ~(¢) (it has
strictly negative y-coordinate at ty) and satisfies the same initial conditions as (¢). This contradicts
the uniqueness of a geodesic starting from a given point in a given direction.

/1 o’ (t) dt:/12(\/@)/dt=2m—2m:2_2‘3
0 0

which tends to 2 as € tends to zero.

It follows from (c) that the sequence 1/n is a Cauchy sequence, but does not converge in M. Thus,
(M, g) is not complete, and by the Hopf — Rinow theorem it is not geodesically complete.

1.2. (%) Let H3(R) be the set of 3 x 3 unit upper-triangular matrices (i.e. the matrices of the form

1 r1 I9
0 1 r3 | ,
0 0 1

where x1, 9, z3 € R).

(a)

(b)
()

(d)

Show that H3(R) is a group with respect to matrix multiplication. This group is called the
Heisenberg group.

Show that the Heisenberg group is a Lie group. What is its dimension?

Prove that the matrices
010 0 01 0 00
Xi=(0 0 0], Xo=1|0 0 0], Xs=1[0 0 1
0 00 0 00 0 00

form a basis of the tangent space T, H3(R) of the group H3(R) at the neutral element e.

For each k = 1,2, 3, find an explicit formula for the curve ¢; : R — H3(R) given by cx(t) =
Exp (tX%).

Solution:

(a)

(b)

()

(d)

It is an easy computation to check the axioms of a group (i.e Hs is closed under multiplication, there
exists an obvious neutral element (3 x 3 identity matrix), there is an inverse element for each h € Hs,
associativity works as always in matrix groups).

The matrix elements (z1, 22, 23) give a global chart on Hs, so Hs is a smooth 3-manifold. The mul-
tiplication g1g2 can be written as (1,2, 23)(Y1,y2,¥3) = (1 + y1, 22 + y2 + T1Y3, 3 + y3), and the
inverse element g; ' can be written as (x1,x2,x3)"" = (—x1, 2123 — T2, —23), which are smooth maps
Hj3; x H3 — H3 and Hs3 — Hj respectively. Hence, Hj is a Lie group.

To see that the matrices X; belong to T.Hs consider the paths ¢;(t) = I + X;t € Hz. By definition,
a% = c(t) = X;. So, {X1, X2, X3} is the basis of T, H3 since {a%, a%, 8.%3 is a basis.

Since X2 =0 for i = 1,2,3 we see that Exp (tX;) = I + X;t.



1.3. Let G, H be Lie groups. A map ¢ : G — H is called a homomorphism (of Lie groups) if it is smooth
and it is a homomorphism of abstract groups.

Denote by g, b Lie algebras of G and H, and let ¢ : G — H be a homomorphism.

(a) Show that the differential Dy(e) : T.G — T.H induces a linear map Dy : g — b, where Dp(X)
for X € g is the unique left-invariant vector field on H such that Dp(X)(e) = Dp(X (e)).

(b) Show that for any g € G
Logyop=¢oly

(c) Show that for any X € gand g € G

Dp(X)(#(9)) = Dp(X(9))

is a homomorphism of Lie algebras, i.e. a linear map satisfying

(d) Show that Dy : g — b
= [Dp(X),Dp(Y)] for any X,Y € g.

Dp([X,Y])
Solution:

(a) The map Dy : g — b defined by Dp(X)(e) = Dp(X(e)) is clearly linear.

(b) Since ¢ is a homomorphism, we have for h € G
(Lg(g) © ) (h) = @(g)p(h) = p(gh) = ¢(Ly(h)) = ¢ o Ly(h)

(c¢) Since Dp(X) € b, we have

Dp(X)(p(g)) = DLy(g) () Dp(X)(e) = DLy(q) () Dp(X(€)) = D(Ly(g) 0 ¢)(e) X (€) =
= D(poLy)X(e) = Do(DLyX(e)) = Dp(X(g))

(d) Reproducing the proof of Prop. 6.8 (substituting L, by ¢ and making use of (c) and Lemma 6.7), we
have for every f € C°(H) and g € G

(Dpo [X,Y](9)(f) = X, Y](9)(fop) = X(9Y(fow)-Y(9)X(fop)=

(@)(DeoY)(f)) =Y (9)(Dp o X)(f)) =

(@) (De(Y)(f) 0 9) = Y(g)(Dp(X)(f) ©

(X (9)(De(Y)(f) = DY (9))(De(X)(f)) =

P(X)(p(9)(De(Y)(f)) = De(Y)(0(9))(De(X)(f)) =
= [De(X), De(Y)](¢(9))(f)

In particular, taking g = e, we have (Dy o [X,Y])(e) = [Dp(X), De(Y)](e). According to (c), we have

Dp([X,Y])op = DpolX, Y] S0 (D<po[X Y])(e) = Dy([X,Y])(e). Therefore, we have two left-invariant

vector fields Dp([X,Y]) and [De(X), Dp(Y)] coinciding at e, which implies they are equal.
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