Riemannian Geometry IV, Homework 1 (Week 11)
Due date for starred problems: Wednesday, January 28.
1.1. (\star) Consider the upper half-plane $M=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ with the metric

$$
\left(g_{i j}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{y}
\end{array}\right)
$$

(a) Show that all the Christoffel symbols are zero except $\Gamma_{22}^{2}=-\frac{1}{2 y}$.
(b) Show that the vertical segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ is a geodesic curve when parametrized proportionally to arc length.
(c) Show that the length of the segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ tends to 2 as ε tends to zero.
(d) Show that (M, g) is not geodesically complete.
1.2. (\star) Let $H_{3}(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$
\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where $\left.x_{1}, x_{2}, x_{3} \in \mathbb{R}\right)$.
(a) Show that $H_{3}(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the Heisenberg group.
(b) Show that the Heisenberg group is a Lie group. What is its dimension?
(c) Prove that the matrices

$$
X_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis of the tangent space $T_{e} H_{3}(\mathbb{R})$ of the group $H_{3}(\mathbb{R})$ at the neutral element e.
(d) For each $k=1,2,3$, find an explicit formula for the curve $c_{k}: \mathbb{R} \rightarrow H_{3}(\mathbb{R})$ given by $c_{k}(t)=$ $\operatorname{Exp}\left(t X_{k}\right)$.
1.3. Let G, H be Lie groups. A map $\varphi: G \rightarrow H$ is called a homomorphism (of Lie groups) if it is smooth and it is a homomorphism of abstract groups.
Denote by $\mathfrak{g}, \mathfrak{h}$ Lie algebras of G and H, and let $\varphi: G \rightarrow H$ be a homomorphism.
(a) Show that the differential $D \varphi(e): T_{e} G \rightarrow T_{e} H$ induces a linear map $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$, where $D \varphi(X)$ for $X \in \mathfrak{g}$ is the unique left-invariant vector field on H such that $D \varphi(X)(e)=D \varphi(X(e))$.
(b) Show that for any $g \in G$

$$
L_{\varphi(g)} \circ \varphi=\varphi \circ L_{g}
$$

(c) Show that for any $X \in \mathfrak{g}$ and $g \in G$

$$
D \varphi(X)(\varphi(g))=D \varphi(X(g))
$$

(d) Show that $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a homomorphism of Lie algebras, i.e. a linear map satisfying $D \varphi([X, Y])=[D \varphi(X), D \varphi(Y)]$ for any $X, Y \in \mathfrak{g}$.

