Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. Let $G \subset G L_{n}(\mathbb{R}), v, w \in T_{I} G$. Use the definition

$$
\mathrm{ad}_{w} v=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} \operatorname{Exp}(t w) \operatorname{Exp}(s v) \operatorname{Exp}(-t w)
$$

of the adjoint representation and the expansion of the power series for exponents of $t w$ and $s v$ to show that $\operatorname{ad}_{w} v=[w, v]$.

Solution: This can be done by a straightforward computation. Namely, by expanding all the exponents as power series and collecting the coefficients of $t^{1} s^{1}$ in the product one can immediately see that the coefficient is $w v-v w$. Now observe that after taking derivatives with respect to s and t at $(0,0)$ one obtains exactly the coefficient of $t^{1} s^{1}$.
2.2. (a) Let $A, B \in M_{n}(\mathbb{R}),[A, B]=0$. Take $t \in \mathbb{R}$ and show that $\operatorname{Exp}(t(A+B))=\operatorname{Exp}(t A) \operatorname{Exp}(t B)$ (in particular, you obtain that $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \operatorname{Exp}(B)$).
(b) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Guess what would be the exponential of an $n \times n$-matrix of the same form (i.e., a Jordan block with zero eigenvalue).
(c) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Solution:
(a) As in the previous exercise, expand both exponents $\operatorname{Exp}(t A)$ and $\operatorname{Exp}(t B)$ as power series and collect the coefficient of t^{n} in the product. The monomials involved will be of type $\frac{(t A)^{k}(t B)^{n-k}}{k!(n-k)!}$, so the monomial containing t^{n} in the product will be

$$
\sum_{k=0}^{n} \frac{(t A)^{k}(t B)^{n-k}}{k!(n-k)!}=\sum_{k=0}^{n} t^{n} \frac{A^{k} B^{n-k}}{k!(n-k)!}=\frac{t^{n}}{n!} \sum_{k=0}^{n} A^{k} B^{n-k} \frac{n!}{k!(n-k)!}=\frac{t^{n}}{n!}(A+B)^{n}
$$

(b) Let $A=\left(\begin{array}{llll}0 & t & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & t \\ 0 & 0 & 0 & 0\end{array}\right)$. We have

$$
A^{2}=\left(\begin{array}{cccc}
0 & 0 & t^{2} & 0 \\
0 & 0 & 0 & t^{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & t^{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{k}=0 \quad \text { for all } k \geq \text { aspowerseriesand } 4
$$

So the power series $\operatorname{Exp}(A)$ terminates after 4 terms and we conclude that

$$
\operatorname{Exp}(A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(c) Let $B=t c I$, where I denotes the 4×4 identity matrix, and let A be as in (a). Then we have $\operatorname{Exp}(B)=e^{t c} I$ and A and B commute. This implies that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=\operatorname{Exp}(A+B)=\operatorname{Exp}(B) \operatorname{Exp}(A)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2.3. (\star) Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a bi-invariant Riemannian metric (i.e., both L_{g} and R_{g} are isometries for every $g \in G)$. Let \mathfrak{g} denote the Lie algebra of G, and let $X, Y, Z \in \mathfrak{g}$.
(a) Show that $\langle X, Y\rangle$ is a constant function on G.
(b) Use the relation

$$
\left\langle Z, \nabla_{X} Y\right\rangle=\frac{1}{2}(X\langle Z, Y\rangle+Y\langle Z, X\rangle-Z\langle Y, X\rangle+\langle X,[Z, Y]\rangle+\langle Y,[Z, X]\rangle-\langle Z,[Y, X]\rangle)
$$

and the fact that the metric is left-invariant to prove that $\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle$.
(c) By Corollary 6.18, the bi-invariance of the metric implies that

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle
$$

for $X, U, V \in \mathfrak{g}$. Use this fact to conclude that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$.
(d) Show that $\nabla_{X} Y=\frac{1}{2}[X, Y]$.

Solution:

(a)

$$
\langle X(g), Y(g)\rangle_{g}=\left\langle D L_{g}(e) X(e), D L_{g}(e) Y(e)\right\rangle_{g}=\langle X(e), Y(e)\rangle_{e},
$$

so $\langle X(g), Y(g)\rangle_{g}$ does not depend on g.
(b) The relation with 6 terms in the RHS implies that

$$
\begin{aligned}
&\left\langle Z, \nabla_{Y} Y\right\rangle=\frac{1}{2}(Y\langle Z, Y\rangle+Y\langle Z, Y\rangle-Z\langle Y, Y\rangle+\langle Y,[Z, Y]\rangle+\langle Y,[Z, Y]\rangle-\langle Z,[Y, Y]\rangle)= \\
& \frac{1}{2}(\langle Y,[Z, Y]\rangle+\langle Y,[Z, Y]\rangle),
\end{aligned}
$$

since the first three derivatives of the right hand side of the relation vanish by (a). Moreover, we have $[Y, Y]=0$. Thus, we conclude that

$$
\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle
$$

(c) The bi-invariance implies that

$$
\langle[Y, X], Y\rangle=-\langle Y,[Y, X]\rangle=-\langle[Y, X], Y\rangle
$$

so $\langle[Y, X], Y\rangle=0$. This gives us $\left\langle X, \nabla_{Y} Y\right\rangle=0$ for all left-invariant X, so we have $\nabla_{Y} Y=0$ for all left-invariant Y.
(d) We calculate

$$
0=\nabla_{X+Y}(X+Y)=\nabla_{X} Y+\nabla_{Y} X+\nabla_{X} X+\nabla_{Y} Y=\nabla_{X} Y+\nabla_{Y} X=2 \nabla_{X} Y-[X, Y]
$$

Division by two finally yields

$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

2.4. Let G be a Lie group, $H \subset G$ be a closed subgroup, $\pi: G \rightarrow G / H$ be the canonical projection. Let $\langle\cdot, \cdot\rangle_{e}$ be an Ad_{H}-invariant inner product on $T_{e} G$ (i.e. $\left\langle\operatorname{Ad}_{h} v, \operatorname{Ad}_{h} w\right\rangle_{e}=\langle v, w\rangle_{e}$ for every $h \in H, v, w \in T_{e} G$). Define $V \subset T_{e} G$ to be the orthogonal complement to $T_{e} H \subset T_{e} G$ with respect to $\langle\cdot, \cdot\rangle_{e}$, and let Φ be the restriction of $D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ to the subspace V. Prove the following statements:
(a) $T_{e} H=\operatorname{ker} D \pi(e)$.
(You may use without proof that $D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ is surjective.)
(b) $\Phi: V \rightarrow T_{e H} G / H$ is an isomorphism.
(c) V is Ad_{H}-invariant.

Solution:

Let $N=\operatorname{dim} G$ and $n=\operatorname{dim} H$.
(a) We first show that $T_{e} H \subset \operatorname{ker} D \pi(e)$. Let $v \in T_{e} H$. Then there exists a curve $c:(-\varepsilon, \varepsilon) \rightarrow H$ such that $c(0)=e$ and $c^{\prime}(0)=v$. The image curve $\pi \circ c:(-\varepsilon, \varepsilon) \rightarrow G / H$ is constant because of $c(t) H=e H$ for all $t \in(-\varepsilon, \varepsilon)$. This implies that

$$
D \pi(e)(v)=\left.\frac{d}{d t}\right|_{t=0} \pi \circ c(t)=0 \in T_{e H} G / H .
$$

$D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ is surjective, and we have by the dimension formula:

$$
\operatorname{dim} \operatorname{ker} D \pi(e)+\operatorname{dim} T_{e H} G / H=\operatorname{dim} T_{e} G,
$$

i.e., $\operatorname{dim} \operatorname{ker} D \pi(e)=N-(N-n)=n$. Since $\operatorname{dim} T_{e} H=n$, we conclude that $T_{e} H=\operatorname{ker} D \pi(e)$.
(b) Note first that $\operatorname{dim} V=\operatorname{dim} T_{e} G-\operatorname{dim} \operatorname{ker} D \pi(e)=N-n$ and $\operatorname{dim} T_{e H} G / H=N-n$, so we are done if we prove that Φ is surjective (then it is also injective by dimension argument). We know that $D \pi(e)$: $T_{e} G \rightarrow T_{e H} G / H$ is surjective. For a given $v \in T_{e H} G / H$ let $v_{1} \in T_{e} G$ such that $D \pi(e)\left(v_{1}\right)=v$. Let $v_{1}=u_{1}+w_{1} \in T_{e} H \perp V$. Since $T_{e} H=\operatorname{ker} D \pi(e)$, we have $v=D \pi(e)\left(v_{1}\right)=D \pi(e)\left(w_{1}\right)=\Phi\left(w_{1}\right)$. This shows surjectivity of Φ.
(c) We first show that $T_{e} H$ is $A d_{H}$-invariant. Let $v \in T_{e} H=\operatorname{ker} D \pi(e)$. Then there is a curve $c:(-\epsilon, \epsilon) \rightarrow H$ such that $c(0)=e$ and $c^{\prime}(0)=v$, and we have

$$
D \pi(e)\left(A d_{h} v\right)=\left.\frac{d}{d t}\right|_{t=0} \pi(\underbrace{h c(t) h^{-1}}_{\epsilon H})=0 \in T_{e H} G / H,
$$

i.e., $A d_{h} v \in \operatorname{ker} D \pi(e)=T_{e} H$. Recall that $\langle\cdot, \cdot\rangle_{e}$ is $A d_{H}$-invariant. Let $v \in V$. We need to show that $A d_{h} v \perp T_{e} H$. Let $h \in H$ and $w \in T_{e} H$. Then

$$
\left\langle A d_{h} v, w\right\rangle_{e}=\left\langle A d_{h^{-1}} A d_{h} v, A d_{h^{-1}} w\right\rangle_{e}=\langle\underbrace{v}_{\in V}, \underbrace{A d_{h-1} w}_{\in T_{e} H}\rangle_{e}=0 .
$$

Here we used $A d_{h_{1}} A d_{h_{2}}=A d_{h_{1} h_{2}}$ (check this!)

