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Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. Let G C GL,(R), v,w € T1G. Use the definition

d
ady,v = —

Exp (tw) Exp (sv) Exp (—tw)
s=0
of the adjoint representation and the expansion of the power series for exponents of tw and sv to show
that ad,v = [w,v].
Solution: This can be done by a straightforward computation. Namely, by expanding all the exponents as
power series and collecting the coefficients of t's! in the product one can immediately see that the coefficient
is wv — vw. Now observe that after taking derivatives with respect to s and ¢ at (0,0) one obtains exactly the
coefficient of t!s!.

2.2. (a) Let A,B € M,(R), [A,B] = 0. Take ¢t € R and show that Exp (¢{(A + B)) = Exp (tA) Exp (tB)
(in particular, you obtain that Exp (A + B) = Exp (A) Exp (B)).
(b) Show that
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Guess what would be the exponential of an n x n-matrix of the same form (i.e., a Jordan block

with zero eigenvalue).

(c) Show that
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Solution:

(a) Asin the previous exercise, expand both exponents Exp (tA) and Exp (¢B) as power series and collect the
k n—k
coefficient of " in the product. The monomials involved will be of type %, so the monomial

containing t" in the product will be
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(b) Let A= 8 8 é (t) . We have
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So the power series Exp (A) terminates after 4 terms and we conclude that
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(c) Let B = tel, where I denotes the 4 x 4 identity matrix, and let A be as in (a). Then we have Exp (B) = e'“I
and A and B commute. This implies that
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Exp | ¢ 00 ¢ 1 =Exp(A+ B) =Exp(B)Exp(A) =e¢ 00 1 ;
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2.3. (x) Let (G,(:,-)) be a Lie group with a bi-invariant Riemannian metric (i.e., both L, and R, are
isometries for every g € GG). Let g denote the Lie algebra of G, and let X,Y, Z € g.

(a) Show that (X,Y) is a constant function on G.
(b) Use the relation

(Z,VxY)= %(X(Z, Y)+Y(Z, X)-Z(Y,X)+(X,[Z,Y])+ (Y, [Z,X]) — (Z,]Y, X]))

and the fact that the metric is left-invariant to prove that (Z, VyY) = (Y, [Z,Y]).
(c) By Corollary 6.18, the bi-invariance of the metric implies that

<[U’ X]’ V> = _<U’ [V’ X]>
for X, U,V € g. Use this fact to conclude that VyY =0 for all Y € g.
(d) Show that VxY = 1[X,Y].
Solution:

(a)
(X(9),Y(9))g = (DLg(e)X(e), DLy(e)Y (¢))g = (X(e), Y (€))e,
s0 (X(g),Y (g))g4 does not depend on g.
(b) The relation with 6 terms in the RHS implies that

<27 VYY> =

DN | =

(V(ZY) 4 Y{Z,Y) = Z00,Y) + (V2 Y] + YV, 2,Y]) - (ZV,Y]) =
S (2 YD+, (2,7,

since the first three derivatives of the right hand side of the relation vanish by (a). Moreover, we have
[Y,Y] = 0. Thus, we conclude that
<Z7 VYY> = <Y7 [Z7 Y]>

(c¢) The bi-invariance implies that
(Y, X],Y) = =\, [Y, X]) = —([\, X], Y),

so ([Y, X],Y) = 0. This gives us (X,VyY) = 0 for all left-invariant X, so we have VyY = 0 for all
left-invariant Y.

(d) We calculate
0=Vxivy(X+Y)=VxY+VyX+VxX+VyY =VxY +VyX =2VxY - [X,Y].

Division by two finally yields

1
VxY = S [X.Y].



2.4. Let G be a Lie group, H C G be a closed subgroup, 7 : G — G/H be the canonical projection. Let (-, -),
be an Adg-invariant inner producton T.G (i.e. (Adpv, Adpw). = (v, w), for every h € H, v,w € T.G).
Define V' C T.G to be the orthogonal complement to T.H C T.G with respect to (-, )¢, and let ® be
the restriction of D7 (e) : T.G — Ty G/H to the subspace V. Prove the following statements:

(a)

(b)
()

TcH = kerD7(e).
(You may use without proof that Dr(e) : T.G — T,y G/H is surjective.)

®:V — T,y G/H is an isomorphism.

V is Adg-invariant.

Solution:
Let N =dimG and n = dim H.

(a)

We first show that T.H C kerDmw(e). Let v € T,H. Then there exists a curve ¢ : (—¢,e) — H such that
¢(0) = e and ¢/(0) = v. The image curve woc: (—g,e) — G/H is constant because of ¢(t)H = eH for all
t € (—e,¢). This implies that

Dr(e)(v) = — 707roc(t) =0e€T.yG/H.

Dn(e) : T.G — T.yG/H is surjective, and we have by the dimension formula:
dimkerDr(e) + dimT.yG/H = dim T, G,

i.e., dimkerDn(e) = N — (N —n) = n. Since dimT,H = n, we conclude that T, H = kerDr(e).

Note first that dimV = dim 7T, G — dimkerDn(e) = N —n and dim7T,yG/H = N — n, so we are done
if we prove that ® is surjective (then it is also injective by dimension argument). We know that D (e) :
T.G — T,gG/H is surjective. For a given v € T,yG/H let vy € T.G such that Dr(e)(vi) = v. Let
vy =u1+w € T.HLV. Since T.H = kerDn(e), we have v = Dn(e)(v1) = Dm(e)(w1) = ®(ws). This
shows surjectivity of ®.

We first show that T H is Adg-invariant. Let v € T.H = kerDm(e). Then there is a curve ¢ : (—€,¢) - H
such that ¢(0) = e and ¢/(0) = v, and we have

Dr(e)(Adpv) = % m(he(t)h™') =0 € T.yG/H,
t=0 N
€EH

ie., Adpv € kerDm(e) = TH. Recall that (-,-). is Adpg-invariant. Let v € V. We need to show that
AdpvlT . H. Let h € H and w € T.H. Then

(Adpv,w)e = (Adp-1 Adpv, Adp—1w)e = (v, Adp—1w), = 0.
N~ ——

ev eT.H

Here we used Adp,, Adp, = Adp,n, (check this!)



