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Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. Let G ⊂ GLn(R), v, w ∈ TIG. Use the definition

adwv =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

Exp (tw) Exp (sv) Exp (−tw)

of the adjoint representation and the expansion of the power series for exponents of tw and sv to show
that adwv = [w, v].

Solution: This can be done by a straightforward computation. Namely, by expanding all the exponents as

power series and collecting the coefficients of t1s1 in the product one can immediately see that the coefficient

is wv − vw. Now observe that after taking derivatives with respect to s and t at (0, 0) one obtains exactly the

coefficient of t1s1.

2.2. (a) Let A,B ∈ Mn(R), [A,B] = 0. Take t ∈ R and show that Exp (t(A + B)) = Exp (tA) Exp (tB)
(in particular, you obtain that Exp (A+B) = Exp (A) Exp (B)).

(b) Show that

Exp

t


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 =


1 t t2/2 t3/6
0 1 t t2/2
0 0 1 t
0 0 0 1

 .

Guess what would be the exponential of an n× n-matrix of the same form (i.e., a Jordan block
with zero eigenvalue).

(c) Show that

Exp

t

c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


 = etc


1 t t2/2 t3/6
0 1 t t2/2
0 0 1 t
0 0 0 1

 .

Solution:

(a) As in the previous exercise, expand both exponents Exp (tA) and Exp (tB) as power series and collect the

coefficient of tn in the product. The monomials involved will be of type (tA)k(tB)n−k

k!(n−k)! , so the monomial

containing tn in the product will be

n∑
k=0

(tA)k(tB)n−k

k!(n− k)!
=

n∑
k=0

tn
AkBn−k

k!(n− k)!
=
tn

n!

n∑
k=0

AkBn−k n!

k!(n− k)!
=
tn

n!
(A+B)n

(b) Let A =


0 t 0 0
0 0 t 0
0 0 0 t
0 0 0 0

. We have

A2 =


0 0 t2 0
0 0 0 t2

0 0 0 0
0 0 0 0

 , A3 =


0 0 0 t3

0 0 0 0
0 0 0 0
0 0 0 0

 , Ak = 0 for all k ≥ aspowerseriesand4.

So the power series Exp (A) terminates after 4 terms and we conclude that

Exp (A) = I +A+
1

2
A2 +

1

3!
A3 =


1 t t2/2 t3/(3!)
0 1 t t2/2
0 0 1 t
0 0 0 1

 .



(c) Let B = tcI, where I denotes the 4×4 identity matrix, and let A be as in (a). Then we have Exp (B) = etcI
and A and B commute. This implies that

Exp

t

c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


 = Exp (A+B) = Exp (B)Exp (A) = etc


1 t t2/2 t3/(3!)
0 1 t t2/2
0 0 1 t
0 0 0 1

 .

2.3. (?) Let (G, 〈·, ·〉) be a Lie group with a bi-invariant Riemannian metric (i.e., both Lg and Rg are
isometries for every g ∈ G). Let g denote the Lie algebra of G, and let X,Y, Z ∈ g.

(a) Show that 〈X,Y 〉 is a constant function on G.

(b) Use the relation

〈Z,∇XY 〉 =
1

2
(X〈Z, Y 〉+ Y 〈Z,X〉 − Z〈Y,X〉+ 〈X, [Z, Y ]〉+ 〈Y, [Z,X]〉 − 〈Z, [Y,X]〉)

and the fact that the metric is left-invariant to prove that 〈Z,∇Y Y 〉 = 〈Y, [Z, Y ]〉.
(c) By Corollary 6.18, the bi-invariance of the metric implies that

〈[U,X], V 〉 = −〈U, [V,X]〉

for X,U, V ∈ g. Use this fact to conclude that ∇Y Y = 0 for all Y ∈ g.

(d) Show that ∇XY = 1
2 [X,Y ].

Solution:

(a)
〈X(g), Y (g)〉g = 〈DLg(e)X(e), DLg(e)Y (e)〉g = 〈X(e), Y (e)〉e,

so 〈X(g), Y (g)〉g does not depend on g.

(b) The relation with 6 terms in the RHS implies that

〈Z,∇Y Y 〉 =
1

2
(Y 〈Z, Y 〉+ Y 〈Z, Y 〉 − Z〈Y, Y 〉+ 〈Y, [Z, Y ]〉+ 〈Y, [Z, Y ]〉 − 〈Z, [Y, Y ]〉) =

1

2
(〈Y, [Z, Y ]〉+ 〈Y, [Z, Y ]〉) ,

since the first three derivatives of the right hand side of the relation vanish by (a). Moreover, we have
[Y, Y ] = 0. Thus, we conclude that

〈Z,∇Y Y 〉 = 〈Y, [Z, Y ]〉.

(c) The bi-invariance implies that

〈[Y,X], Y 〉 = −〈Y, [Y,X]〉 = −〈[Y,X], Y 〉,

so 〈[Y,X], Y 〉 = 0. This gives us 〈X,∇Y Y 〉 = 0 for all left-invariant X, so we have ∇Y Y = 0 for all
left-invariant Y .

(d) We calculate

0 = ∇X+Y (X + Y ) = ∇XY +∇YX +∇XX +∇Y Y = ∇XY +∇YX = 2∇XY − [X,Y ].

Division by two finally yields

∇XY =
1

2
[X,Y ].



2.4. LetG be a Lie group, H ⊂ G be a closed subgroup, π : G→ G/H be the canonical projection. Let 〈·, ·〉e
be an AdH -invariant inner product on TeG (i.e. 〈Adhv,Adhw〉e = 〈v, w〉e for every h ∈ H, v,w ∈ TeG).
Define V ⊂ TeG to be the orthogonal complement to TeH ⊂ TeG with respect to 〈·, ·〉e, and let Φ be
the restriction of Dπ(e) : TeG→ TeH G/H to the subspace V . Prove the following statements:

(a) TeH = kerDπ(e).
(You may use without proof that Dπ(e) : TeG→ TeH G/H is surjective.)

(b) Φ : V → TeH G/H is an isomorphism.

(c) V is AdH -invariant.

Solution:

Let N = dimG and n = dimH.

(a) We first show that TeH ⊂ kerDπ(e). Let v ∈ TeH. Then there exists a curve c : (−ε, ε) → H such that
c(0) = e and c′(0) = v. The image curve π ◦ c : (−ε, ε)→ G/H is constant because of c(t)H = eH for all
t ∈ (−ε, ε). This implies that

Dπ(e)(v) =
d

dt

∣∣∣∣
t=0

π ◦ c(t) = 0 ∈ TeHG/H.

Dπ(e) : TeG→ TeHG/H is surjective, and we have by the dimension formula:

dim kerDπ(e) + dimTeHG/H = dimTeG,

i.e., dim kerDπ(e) = N − (N − n) = n. Since dimTeH = n, we conclude that TeH = kerDπ(e).

(b) Note first that dimV = dimTeG − dim kerDπ(e) = N − n and dimTeHG/H = N − n, so we are done
if we prove that Φ is surjective (then it is also injective by dimension argument). We know that Dπ(e) :
TeG → TeHG/H is surjective. For a given v ∈ TeHG/H let v1 ∈ TeG such that Dπ(e)(v1) = v. Let
v1 = u1 + w1 ∈ TeH⊥V . Since TeH = kerDπ(e), we have v = Dπ(e)(v1) = Dπ(e)(w1) = Φ(w1). This
shows surjectivity of Φ.

(c) We first show that TeH is AdH -invariant. Let v ∈ TeH = kerDπ(e). Then there is a curve c : (−ε, ε)→ H
such that c(0) = e and c′(0) = v, and we have

Dπ(e)(Adhv) =
d

dt

∣∣∣∣
t=0

π(hc(t)h−1︸ ︷︷ ︸
∈H

) = 0 ∈ TeHG/H,

i.e., Adhv ∈ kerDπ(e) = TeH. Recall that 〈·, ·〉e is AdH -invariant. Let v ∈ V . We need to show that
Adhv⊥TeH. Let h ∈ H and w ∈ TeH. Then

〈Adhv, w〉e = 〈Adh−1Adhv,Adh−1w〉e = 〈 v︸︷︷︸
∈V

, Adh−1w︸ ︷︷ ︸
∈TeH

〉e = 0.

Here we used Adh1
Adh2

= Adh1h2
(check this!)


