Durham University Pavel Tumarkin

Riemannian Geometry IV, Homework 2 (Week 12)

Due date for starred problems: Wednesday, January 28.

2.1. Let $G \subset GL_n(\mathbb{R}), v, w \in T_I G$. Use the definition

$$\operatorname{ad}_{w} v = \left. \frac{d}{dt} \right|_{t=0} \left. \frac{d}{ds} \right|_{s=0} \operatorname{Exp}(tw) \operatorname{Exp}(sv) \operatorname{Exp}(-tw)$$

of the adjoint representation and the expansion of the power series for exponents of tw and sv to show that $ad_wv = [w, v]$.

- **2.2.** (a) Let $A, B \in M_n(\mathbb{R})$, [A, B] = 0. Take $t \in \mathbb{R}$ and show that Exp(t(A + B)) = Exp(tA) Exp(tB) (in particular, you obtain that Exp(A + B) = Exp(A) Exp(B)).
 - (b) Show that

$$\operatorname{Exp}\left(t\begin{pmatrix}0&1&0&0\\0&0&1&0\\0&0&0&1\\0&0&0&0\end{pmatrix}\right) = \begin{pmatrix}1&t&t^2/2&t^3/6\\0&1&t&t^2/2\\0&0&1&t\\0&0&0&1\end{pmatrix}.$$

Guess what would be the exponential of an $n \times n$ -matrix of the same form (i.e., a Jordan block with zero eigenvalue).

(c) Show that

$$\operatorname{Exp}\left(t\begin{pmatrix}c&1&0&0\\0&c&1&0\\0&0&c&1\\0&0&0&c\end{pmatrix}\right) = e^{tc}\begin{pmatrix}1&t&t^2/2&t^3/6\\0&1&t&t^2/2\\0&0&1&t\\0&0&0&1\end{pmatrix}.$$

- **2.3.** (\star) Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with a *bi-invariant* Riemannian metric (i.e., both L_g and R_g are isometries for every $g \in G$). Let \mathfrak{g} denote the Lie algebra of G, and let $X, Y, Z \in \mathfrak{g}$.
 - (a) Show that $\langle X, Y \rangle$ is a constant function on G.
 - (b) Use the relation

$$\langle Z, \nabla_X Y \rangle = \frac{1}{2} \left(X \langle Z, Y \rangle + Y \langle Z, X \rangle - Z \langle Y, X \rangle + \langle X, [Z, Y] \rangle + \langle Y, [Z, X] \rangle - \langle Z, [Y, X] \rangle \right)$$

and the fact that the metric is left-invariant to prove that $\langle Z, \nabla_Y Y \rangle = \langle Y, [Z, Y] \rangle$.

(c) By Corollary 6.18, the bi-invariance of the metric implies that

$$\langle [U, X], V \rangle = - \langle U, [V, X] \rangle$$

for $X, U, V \in \mathfrak{g}$. Use this fact to conclude that $\nabla_Y Y = 0$ for all $Y \in \mathfrak{g}$. (d) Show that $\nabla_X Y = \frac{1}{2}[X, Y]$.

- **2.4.** Let G be a Lie group, $H \subset G$ be a closed subgroup, $\pi : G \to G/H$ be the canonical projection. Let $\langle \cdot, \cdot \rangle_e$ be an Ad_H-invariant inner product on T_eG (i.e. $\langle Ad_hv, Ad_hw \rangle_e = \langle v, w \rangle_e$ for every $h \in H$, $v, w \in T_eG$). Define $V \subset T_eG$ to be the orthogonal complement to $T_eH \subset T_eG$ with respect to $\langle \cdot, \cdot \rangle_e$, and let Φ the restriction of $D\pi(e) : T_eG \to T_{eH}G/H$ to the subspace V. Prove the following statements:
 - (a) $T_e H = \ker D\pi(e)$.

(You may use without proof that $D\pi(e): T_eG \to T_{eH}G/H$ is surjective.)

- (b) $\Phi: V \to T_{eH} G/H$ is an isomorphism.
- (c) V is Ad_H -invariant.