Riemannian Geometry IV, Homework 2 (Week 12)

Due date for starred problems: Wednesday, January 28.

2.1. Let $G \subset G L_{n}(\mathbb{R}), v, w \in T_{I} G$. Use the definition

$$
\operatorname{ad}_{w} v=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} \operatorname{Exp}(t w) \operatorname{Exp}(s v) \operatorname{Exp}(-t w)
$$

of the adjoint representation and the expansion of the power series for exponents of $t w$ and $s v$ to show that $\mathrm{ad}_{w} v=[w, v]$.
2.2. (a) Let $A, B \in M_{n}(\mathbb{R}),[A, B]=0$. Take $t \in \mathbb{R}$ and show that $\operatorname{Exp}(t(A+B))=\operatorname{Exp}(t A) \operatorname{Exp}(t B)$ (in particular, you obtain that $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \operatorname{Exp}(B)$).
(b) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Guess what would be the exponential of an $n \times n$-matrix of the same form (i.e., a Jordan block with zero eigenvalue).
(c) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2.3. (\star) Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a bi-invariant Riemannian metric (i.e., both L_{g} and R_{g} are isometries for every $g \in G)$. Let \mathfrak{g} denote the Lie algebra of G, and let $X, Y, Z \in \mathfrak{g}$.
(a) Show that $\langle X, Y\rangle$ is a constant function on G.
(b) Use the relation

$$
\left\langle Z, \nabla_{X} Y\right\rangle=\frac{1}{2}(X\langle Z, Y\rangle+Y\langle Z, X\rangle-Z\langle Y, X\rangle+\langle X,[Z, Y]\rangle+\langle Y,[Z, X]\rangle-\langle Z,[Y, X]\rangle)
$$

and the fact that the metric is left-invariant to prove that $\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle$.
(c) By Corollary 6.18, the bi-invariance of the metric implies that

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle
$$

for $X, U, V \in \mathfrak{g}$. Use this fact to conclude that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$.
(d) Show that $\nabla_{X} Y=\frac{1}{2}[X, Y]$.
2.4. Let G be a Lie group, $H \subset G$ be a closed subgroup, $\pi: G \rightarrow G / H$ be the canonical projection. Let $\langle\cdot, \cdot\rangle_{e}$ be an Ad_{H}-invariant inner product on $T_{e} G$ (i.e. $\left\langle\operatorname{Ad}_{h} v, \operatorname{Ad}_{h} w\right\rangle_{e}=\langle v, w\rangle_{e}$ for every $h \in H, v, w \in T_{e} G$). Define $V \subset T_{e} G$ to be the orthogonal complement to $T_{e} H \subset T_{e} G$ with respect to $\langle\cdot, \cdot\rangle_{e}$, and let Φ the restriction of $D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ to the subspace V. Prove the following statements:
(a) $T_{e} H=\operatorname{ker} D \pi(e)$.
(You may use without proof that $D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ is surjective.)
(b) $\Phi: V \rightarrow T_{e H} G / H$ is an isomorphism.
(c) V is Ad_{H}-invariant.

