Riemannian Geometry IV, Homework 3 (Week 13)

Due date for starred problems: Wednesday, February 11.
3.1. Let (M, g) be a Riemannian manifold and R its curvature tensor. Let $f, g, h \in C^{\infty}(M)$, and X, Y, Z, W be vector fields on M. Show that
(a) $R(f X, Y) Z=f R(X, Y) Z$;
(b) $R(X, f Y) Z=f R(X, Y) Z$;
(c) $\langle R(X, Y) f Z, W\rangle=\langle f R(X, Y) Z, W\rangle$;
(d) $R(f X, g Y) h Z=f g h R(X, Y) Z$.

3.2. (\star) First Bianchi Identity

Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi Identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0
$$

3.3. (\star) Parametrize the sphere S_{r}^{2} of radius r in \mathbb{R}^{3} by

$$
(x, y, z)=(r \cos \varphi \sin \vartheta, r \sin \varphi \sin \vartheta, r \cos \vartheta)
$$

and consider the metric on S_{r}^{2} induced by the Euclidean metric in \mathbb{R}^{3}.
(a) Compute $R\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right)$.
(b) Compute the sectional curvature of S_{r}^{2}.
3.4. Let (M, g) be a Riemannian manifold. The goal of this exercise is to show that M is of constant sectional curvature K_{0} if and only if

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=-K_{0}\left(\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle-\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle\right)
$$

for any $p \in M$ and $v_{1}, v_{2}, v_{3}, v_{4} \in T_{p} M$. Denote the expression $-K_{0}\left(\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle-\left\langle v_{2}, v_{3}\right\rangle\left\langle v_{1}, v_{4}\right\rangle\right)$ by $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$.
(a) Show that if

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

for any four tangent vectors $v_{1}, v_{2}, v_{3}, v_{4} \in T_{p} M$, then M is of constant sectional curvature K_{0}.
Now assume that M is of constant sectional curvature K_{0}. Our aim is to show that

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

for any four tangent vectors $v_{1}, v_{2}, v_{3}, v_{4} \in T_{p} M$.
(b) Show that the expression $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is a tensor, i.e. it is multilinear.
(c) Show that $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ has the same symmetries as Riemann curvature tensor has. Namely, - $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=-\left(v_{2}, v_{1}, v_{3}, v_{4}\right)$

- $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=-\left(v_{1}, v_{2}, v_{4}, v_{3}\right)$
- $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left(v_{3}, v_{4}, v_{1}, v_{2}\right)$
- $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+\left(v_{2}, v_{3}, v_{1}, v_{4}\right)+\left(v_{3}, v_{1}, v_{2}, v_{4}\right)=0$
(d) Show that if $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subset\{v, w\}$, i.e. no more than two distinct vectors are involved, then

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

(e) Show that if no more than three distinct vectors are involved, then

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
$$

(f) Show that for any four vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle-\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left\langle R\left(v_{3}, v_{1}\right) v_{2}, v_{4}\right\rangle-\left(v_{3}, v_{1}, v_{2}, v_{4}\right),
$$

i.e. the difference above is invariant with respect to cyclic permutation of first three arguments.
(g) Use Bianchi identity to prove the initial statement.
3.5. A Riemannian manifold (M, g) is called Einstein manifold if there exists $c \in \mathbb{R}$ such that

$$
\operatorname{Ric} c_{p}(v, w)=c\langle v, w\rangle
$$

for every $p \in M, v, w \in T_{p} M$.
(a) Show that (M, g) is Einstein manifold if and only if there exists $c \in \mathbb{R}$ such that

$$
\operatorname{Ri} c_{p}(v)=c
$$

for every $p \in M$ and unit tangent vector $v \in T_{p} M$.
(b) Show that if (M, g) is of constant sectional curvature then (M, g) is Einstein manifold.

