Riemannian Geometry IV, Solutions 4 (Week 14)

4.1. Constant sectional curvature of hyperbolic 3-space

Let $\mathbb{H}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}>0\right\}$ be the upper half-space model of the 3-dimensional hyperbolic space, i.e. its metric is defined by $g_{i j}=0$ for $i \neq j, g_{i i}=1 / x_{3}^{2}$.
(a) Show that sectional curvatures $K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right), K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)$ and $K\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$ in \mathbb{H}^{3} are equal to -1 .
(b) Use (a) and the linearity of the Riemann curvature tensor to show that for any $p \in \mathbb{H}^{3}$ and $v_{1}, v_{2}, v_{3}, v_{4} \in T_{p} \mathbb{H}^{3}$

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=-\left(\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle-\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle\right)
$$

holds.
(c) Use (b) to show that 3-dimensional hyperbolic space \mathbb{H}^{3} has constant sectional curvature -1 .
(d) Show that n-dimensional hyperbolic space $\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{n}>0\right\}$ with metric $g_{i j}=0$ for $i \neq j$, $g_{i i}=1 / x_{n}^{2}$ has constant sectional curvature -1 .

Solution:

(a) We can compute the Christoffel symbols in a standard way obtaining

$$
\Gamma_{11}^{3}=\Gamma_{22}^{3}=\frac{1}{x_{3}}, \quad \Gamma_{33}^{3}=\Gamma_{13}^{1}=\Gamma_{31}^{1}=\Gamma_{23}^{2}=\Gamma_{32}^{2}=-\frac{1}{x_{3}},
$$

the remaining ones are zero. Using this, we can also compute that

$$
\begin{aligned}
& \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}=\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}}=\frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}, \quad \nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{3}}=-\frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}, \quad \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{2}}=\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{1}}=0 \\
& \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{3}}=\nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{1}}=-\frac{1}{x_{3}} \frac{\partial}{\partial x_{1}}, \quad \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{3}}=\nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{2}}=-\frac{1}{x_{3}} \frac{\partial}{\partial x_{2}}
\end{aligned}
$$

Now, we compute $K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right)$ and $K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)$.

$$
\begin{aligned}
& K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right)=\frac{\left\langle R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right) \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right\rangle}{\left\|\frac{\partial}{\partial x_{1}}\right\|^{2}\left\|\frac{\partial}{\partial x_{2}}\right\|^{2}-\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle^{2}}= \\
& =\frac{1}{\left\|\frac{\partial}{\partial x_{1}}\right\|^{2}\left\|\frac{\partial}{\partial x_{3}}\right\|^{2}}\left\langle\nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}}-\nabla_{\frac{\partial}{\partial x_{2}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{2}}-\nabla_{\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right]} \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
& =x_{3}^{2} x_{3}^{2}\left\langle\nabla_{\frac{\partial}{\partial x_{1}}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle=x_{3}^{4}\left\langle\frac{1}{x_{3}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
& \quad=x_{3}^{4}\left\langle-\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle=-x_{3}^{4} \frac{1}{x_{3}^{2}} \frac{1}{x_{3}^{2}}=-1
\end{aligned}
$$

and

$$
\begin{aligned}
& K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)=\frac{\left\langle R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right) \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle}{\left\|\frac{\partial}{\partial x_{1}}\right\|^{2}\left\|\frac{\partial}{\partial x_{3}}\right\|^{2}-\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right\rangle^{2}}= \\
&=\frac{1}{\left\|\frac{\partial}{\partial x_{1}}\right\|^{2}\left\|\frac{\partial}{\partial x_{3}}\right\|^{2}}\left\langle\nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{3}}-\nabla_{\frac{\partial}{\partial x_{3}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{3}}-\nabla_{\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right]} \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
&=x_{3}^{2} x_{3}^{2}\left\langle-\nabla_{\frac{\partial}{\partial x_{1}}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{3}}+\nabla_{\frac{\partial}{\partial x_{3}}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle=x_{3}^{4}\left\langle-\frac{1}{x_{3}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{3}} \frac{1}{x_{3}} \frac{\partial}{\partial x_{1}}+\frac{1}{x_{3}} \nabla_{\frac{\partial}{\partial x_{3}}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle= \\
&=x_{3}^{4}\left\langle\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}-\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}+-\frac{1}{x_{3}^{2}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle=-x_{3}^{4} \frac{1}{x_{3}^{2}} \frac{1}{x_{3}^{2}}=-1
\end{aligned}
$$

Computation of $K\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$ is similar.
Remark. In fact, the plane spanned by vectors $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}$ is tangent to vertical hyperbolic plane $x_{2}=c$, so the corresponding sectional curvature is exactly the curvature of hyperbolic plane which is equal to -1 .
Thus, we could avoid the computation of $K\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}\right)$.
(b) By computations similar to ones done in (a), we obtain that

$$
\left\langle R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right) \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right\rangle=\left\langle R\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right) \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{2}}\right\rangle=\left\langle R\left(\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{1}}\right) \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\rangle=0
$$

Now we see that for all vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subset\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\}$ we have an equality

$$
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=-\left(\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle-\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle\right)
$$

By linearity, the equality above holds for any quadruple of tangent vectors.
(c) This follows from (b) and Exercise 3.4.
(d) It is easy to see that the Christoffel symbol $\Gamma_{i j}^{k}$ is not zero if and only if one of (i, j, k) equals n and two others are equal. This implies that if all of (i, j, k, l) are distinct then $R_{i j k l}$ vanishes. Applying the arguments of (b) we conclude that \mathbb{H}^{n} has constant sectional curvature -1 .
4.2. (\star) The Bonnet - Myers theorem claims that if (M, g) is complete and connected, and there is $\varepsilon>0$ such that $\operatorname{Ric}_{p}(v) \geq \varepsilon$ for every $p \in M$ and for every unit tangent vector v, then the diameter of M is finite.
Show by example that the assumption $\varepsilon>0$ is essential (i.e. cannot be substituted by the assumption $\left.\operatorname{Ric}_{p}(v)>0\right)$.
Solution: One may consider an elliptic paraboloid of revolution $z=x^{2}+y^{2}$. Its curvature is positive, but the paraboloid is not compact (e.g., it is unbounded). Note that although the curvature is positive (since the manifold is 2-dimensional sectional and Ricci curvatures coincide) it is not separated from zero, so there is no contradiction with Bonnet-Myers theorem.

4.3. Second Variational Formula of Energy

Let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a proper variation of a geodesic $c:[a, b] \rightarrow M$, and let X be its variational vector field. Let $E:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

Show that

$$
E^{\prime \prime}(0)=\int_{a}^{b}\left\|\frac{D}{d t} X\right\|^{2}-\left\langle R\left(X, c^{\prime}\right) c^{\prime}, X\right\rangle d t
$$

Solution:

Since $E(s)=\frac{1}{2} \int_{a}^{b}\left\langle\frac{\partial F}{\partial t}(s, t), \frac{\partial F}{\partial t}(s, t)\right\rangle d t$, using the Riemannian property of covariant derivative we obtain

$$
E^{\prime}(s)=\int_{a}^{b}\left\langle\frac{D}{d s} \frac{\partial F}{\partial t}(s, t), \frac{\partial F}{\partial t}(s, t)\right\rangle d t
$$

Differentiating the integrand with respect to s, using the Symmetry Lemma, and setting then $s=0$ yields

$$
E^{\prime \prime}(0)=\left.\int_{a}^{b} \frac{d}{d s}\right|_{s=0}\left\langle\frac{D}{d t} \frac{\partial F}{\partial s}(s, t), \frac{\partial F}{\partial s}(s, t)\right\rangle d t
$$

Applying Riemannian property of covariant derivative, Symmetry Lemma, and using that $\frac{\partial F}{\partial s}(0, t)=X(t)$, we conclude that

$$
\begin{aligned}
& E^{\prime \prime}(0)=\int_{a}^{b}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{D}{d t} \frac{\partial F}{\partial s}(s, t), \frac{\partial F}{\partial t}(0, t)\right\rangle d t+\int_{a}^{b}\left\langle\frac{D}{d t} \frac{\partial F}{\partial s}(0, t),\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial t}(s, t)\right\rangle d t= \\
&=\int_{a}^{b}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{D}{d t} \frac{\partial F}{\partial s}(s, t), \frac{\partial F}{\partial t}(0, t)\right\rangle d t+\int_{a}^{b}\left\langle\frac{D}{d t} \frac{\partial F}{\partial s}(0, t), \frac{D}{d t} \frac{\partial F}{\partial s}(0, t)\right\rangle d t= \\
&=\int_{a}^{b}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{D}{d t} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle d t+\int_{a}^{b}\left\|\frac{D X}{d t}\right\|^{2} d t
\end{aligned}
$$

Now we use Lemma 8.4 to interchange the order of covariant derivatives, and again Riemannian property to obtain

$$
\begin{aligned}
&\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{D}{d t} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle= \\
&=\left\langle\left.\frac{D}{d t} \frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle+ \\
&\left.=\frac{d}{d t}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle-\left\langle\frac{\partial F}{\partial s}(0, t), \frac{\partial F}{\partial t}(0, t)\right) \frac{\partial F}{\partial s}(0, t), c^{\prime}(t)\right\rangle= \\
&\left.\frac{\partial F}{\partial s}(s, t), \frac{D}{d t} c^{\prime}(t)\right\rangle+\left\langle R\left(X(t), c^{\prime}(t)\right) X^{\prime}(t), c^{\prime}(t)\right\rangle= \\
&=\frac{d}{d t}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle-\left\langle R\left(X(t), c^{\prime}(t)\right) c^{\prime}(t), X(t)\right\rangle
\end{aligned}
$$

since $c(t)$ is geodesic and $\frac{D}{d t} c^{\prime}(t)=0$.
Now we are left to show that

$$
\int_{a}^{b} \frac{d}{d t}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle d t=0
$$

Indeed,

$$
\int_{a}^{b} \frac{d}{d t}\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, t), c^{\prime}(t)\right\rangle d t=\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, b), c^{\prime}(b)\right\rangle-\left\langle\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial s}(s, a), c^{\prime}(a)\right\rangle,
$$

but

$$
\frac{\partial F}{\partial s}(s, a)=\frac{\partial F}{\partial s}(s, b)=0
$$

since the variation $F(s, t)$ is proper.

