Riemannian Geometry IV, Homework 6 (Week 16)

Due date for starred problems: Wednesday, February 25.
6.1. (a) Let $c(t)$ be a geodesic, and let $c\left(t_{0}\right)$ be conjugate to $c\left(t_{1}\right)$. Let J be any Jacobi field along c vanishing at t_{0} and t_{1}. Show that J is orthogonal, i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle \equiv 0$.
(b) Show that the dimension of the space J_{c}^{\perp} of orthogonal vector fields along c is $2 n-2$.
6.2. (\star) Let $c:[0,1] \rightarrow M$ be a geodesic, and let J be a Jacobi field along c. Denote $c(0)=p, c^{\prime}(0)=v$. Define a curve $\gamma(s)$,

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \quad \gamma(0)=p, \gamma^{\prime}(0)=J(0)
$$

Define also a vector field $V(s) \in \mathfrak{X}_{\gamma}(M)$, such that

$$
V(0)=v, \quad \frac{D}{d s} V(0)=\frac{D}{d t} J(0)
$$

and a variation $F(s, t)=\exp _{\gamma(s)} t V(s)$.
(a) Show that $F(s, t)$ is a geodesic variation of $c(t)$.
(b) Show that $\frac{\partial F}{\partial s}(0,0)=\gamma^{\prime}(0)=J(0)$, and $\frac{D}{d t} \frac{\partial F}{\partial s}(0,0)=\frac{D}{d s} V(0)=\frac{D}{d t} J(0)$.
(c) Deduce from (a) and (b) that every Jacobi field along a geodesic $c(t)$ is a variational vector field of some geodesic variation of c.

6.3. Jacobi fields and conjugate points on locally symmetric spaces

A Riemannian manifold (M, g) is called a locally symmetric space if $\nabla R=0$ (see Exercise 9.3). Let (M, g) be an n-dimensional locally symmetric space and $c:[0, \infty) \rightarrow M$ be a geodesic with $p=c(0)$ and $v=c^{\prime}(0) \in T_{p} M$. Prove the following facts:
(a) Let X, Y, Z be parallel vector fields along c. Show that $R(X, Y) Z$ is also parallel.
(b) Let $K_{v} \in \operatorname{Hom}\left(T_{p} M, T_{p} M\right)$ be the curvature operator defined by

$$
K_{v}(w)=R(w, v) v
$$

Show that K_{v} is self-adjoint, i.e.,

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle
$$

for every pair of vectors $w_{1}, w_{2} \in T_{p} M$.
(c) Choose an orthonormal basis $w_{1}, \ldots, w_{n} \in T_{p} M$ that diagonalizes K_{v}, i.e.,

$$
K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}
$$

(such a basis exists since K_{v} is self-adjoint). Let W_{1}, \ldots, W_{n} be the parallel vector fields along c with $W_{i}(0)=w_{i}$ (i.e., $\left\{W_{i}\right\}$ form a parallel orthonormal basis along c). Show that for all $t \in[0, \infty)$

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t)
$$

(d) Let $J(t)=\sum_{i} J_{i}(t) W_{i}(t)$ be a Jacobi field along c. Show that Jacobi equation translates into

$$
J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, \quad \text { for } i=1, \ldots, n
$$

(e) Show that the conjugate points of p along c are given by $c\left(\pi k / \sqrt{\lambda_{i}}\right)$, where k is any positive integer and λ_{i} is a positive eigenvalue of K_{v}.

