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Riemannian Geometry IV, Solutions 7 (Week 17)

7.1. (?) Let M be a Riemannian manifold of non-positive sectional curvature, i.e. K(Π) ≤ 0
for any 2-plane Π ⊂ TM .

(a) Let c : [a, b] → M be a geodesic and let J be a Jacobi field along c. Let f(t) =
‖J(t)‖2. Show that f ′′(t) ≥ 0, i.e., f is a convex function.

(b) Derive from (a) that M does not admit conjugate points.

Solution:

(a) We have

f ′(t) =
d

dt

∣∣∣
t=0
〈J(t), J(t)〉 = 2〈D

dt
J(t), J(t)〉

and

f ′′(t) = 2

(
〈D

2

dt2
J(t), J(t)〉+

∥∥∥D
dt
J(t)

∥∥∥2) .

Using Jacobi equation, we conclude

f ′′(t) = 2

(
−〈R(J(t), c′(t))c′(t), J(t)〉+

∥∥∥D
dt
J(t)

∥∥∥2) .

We have 〈R(J(t), c′(t))c′(t), J(t)〉 = 0 if J(t), c′(t) are linear dependent and, otherwise, for
Π = span(J(t), c′(t)) ⊂ Tc(t)M ,

〈R(J(t), c′(t))c′(t), J(t)〉 = K(Π)
(
‖J(t)‖2‖c′(t)‖2 − (〈J(t), c′(t)〉)2

)
≤ 0,

since sectional curvature is non-positive. This shows that f ′′(t), as a sum of two non-
negative terms, is greater than or equal to zero.

(b) If there were a conjugate point q = c(t2) to a point p = c(t1) along the geodesic c, then
we would have a non-vanishing Jacobi field J along c with J(t1) = 0 and J(t2) = 0. This
would imply that the convex, non-negative function f(t) = ‖J(t)‖2 would have zeros at
t = t1 and = t2. This would force f to vanish identically on the interval [t1, t2], which
would imply that J vanishes as well, which leads to a contradiction.

7.2. (?) Let M = {(x, y, z) ∈ R3 | x2 + y2 = z} be a paraboloid of revolution with metric
induced by R3. Let p = (0, 0, 0). Show that p has no conjugate points in M .

Solution:

Let q = (q1, q2, q3) 6= p be any point in M . Denote by Π ∈ R3 the 2-dimensional plane spanned
by q and the z-axis. It is easy to check that there is a geodesic c(t) ∈ M ∩ Π with c(0) = p,
c(t1) = q. Moreover, the argument used in class (vertical geodesics in H2) shows that c(t) is a
minimal geodesic between p and q. By Theorem 9.24 this implies that for any t0 ∈ (0, t1) the
point c(t0) is not conjugate to p.

Rotating the whole picture around the z-axis (this is clearly an isometry of M) we see that p
has no conjugate points in a ball z < q3, so taking q far enough from p we can prove that p has
no conjugate points in a ball of any size centered at p.



7.3. Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant deriva-
tive, see Exercise 9.3. T is called a parallel tensor if ∇T = 0.

(a) Assume that T1, T2 : X × X → C∞(M) are parallel tensors. Show that the tensor
T : X× X× X× X→ C∞(M), defined as

T (X1, X2, X3, X4) = T1(X1, X2)T2(X3, X4),

is also parallel.

(b) Use (a) to show that ∇R′ = 0 for the tensor

R′(X, Y, Z,W ) = 〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉.

(c) Use Exercise 3.4 and (b) to show that all manifolds with constant sectional curvature
have parallel Riemann curvature tensor

R(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉.

Solution:

(a) We have

∇T (X1, X2, X3, X4, Y ) =

= Y (T1(X1, X2)T2(X3, X4))−
4∑

i=1

T (X1, . . . ,∇Y Xi, . . . , X4) =

= T1(X1, X2) (Y (T2(X3, X4))− T2(∇Y X3)− T2(∇Y X4))︸ ︷︷ ︸
=∇T2(X3,X4,Y )=0

+

+ T2(X3, X4) (Y (T1(X1, X2))− T1(∇Y X1)− T1(∇Y X2))︸ ︷︷ ︸
=∇T1(X1,X2,Y )=0

= 0.

(b) Let T (X,Y ) = 〈X,Y 〉. Since ∇ is Riemannian, we have

∇T (X,Y, Z) = Z(〈X,Y 〉)− 〈∇ZX,Y 〉 − 〈X,∇ZY 〉 = 0.

Note that R′(X,Y, Z,W ) = T (X,W )T (Y, Z) − T (X,Z)T (Y,W ). Part (a) implies then
that we have ∇R′ = 0.

(c) If (M, g) is a manifold with constant sectional curvature K0 ∈ R , we have by Exercise 3.4

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉 = K0(〈X,W 〉〈Y, Z〉−〈X,Z〉〈Y,W 〉) = K0R
′(X,Y, Z,W ).

Then ∇R = K0∇R′ = 0 follows from (b).


