Riemannian Geometry IV, Solutions 7 (Week 17)

7.1. (\star) Let M be a Riemannian manifold of non-positive sectional curvature, i.e. $K(\Pi) \leq 0$ for any 2-plane $\Pi \subset T M$.
(a) Let $c:[a, b] \rightarrow M$ be a geodesic and let J be a Jacobi field along c. Let $f(t)=$ $\|J(t)\|^{2}$. Show that $f^{\prime \prime}(t) \geq 0$, i.e., f is a convex function.
(b) Derive from (a) that M does not admit conjugate points.

Solution:

(a) We have

$$
f^{\prime}(t)=\left.\frac{d}{d t}\right|_{t=0}\langle J(t), J(t)\rangle=2\left\langle\frac{D}{d t} J(t), J(t)\right\rangle
$$

and

$$
f^{\prime \prime}(t)=2\left(\left\langle\frac{D^{2}}{d t^{2}} J(t), J(t)\right\rangle+\left\|\frac{D}{d t} J(t)\right\|^{2}\right)
$$

Using Jacobi equation, we conclude

$$
f^{\prime \prime}(t)=2\left(-\left\langle R\left(J(t), c^{\prime}(t)\right) c^{\prime}(t), J(t)\right\rangle+\left\|\frac{D}{d t} J(t)\right\|^{2}\right) .
$$

We have $\left\langle R\left(J(t), c^{\prime}(t)\right) c^{\prime}(t), J(t)\right\rangle=0$ if $J(t), c^{\prime}(t)$ are linear dependent and, otherwise, for $\Pi=\operatorname{span}\left(J(t), c^{\prime}(t)\right) \subset T_{c(t)} M$,

$$
\left\langle R\left(J(t), c^{\prime}(t)\right) c^{\prime}(t), J(t)\right\rangle=K(\Pi)\left(\|J(t)\|^{2}\left\|c^{\prime}(t)\right\|^{2}-\left(\left\langle J(t), c^{\prime}(t)\right\rangle\right)^{2}\right) \leq 0
$$

since sectional curvature is non-positive. This shows that $f^{\prime \prime}(t)$, as a sum of two nonnegative terms, is greater than or equal to zero.
(b) If there were a conjugate point $q=c\left(t_{2}\right)$ to a point $p=c\left(t_{1}\right)$ along the geodesic c, then we would have a non-vanishing Jacobi field J along c with $J\left(t_{1}\right)=0$ and $J\left(t_{2}\right)=0$. This would imply that the convex, non-negative function $f(t)=\|J(t)\|^{2}$ would have zeros at $t=t_{1}$ and $=t_{2}$. This would force f to vanish identically on the interval $\left[t_{1}, t_{2}\right]$, which would imply that J vanishes as well, which leads to a contradiction.
7.2. (\star) Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z\right\}$ be a paraboloid of revolution with metric induced by \mathbb{R}^{3}. Let $p=(0,0,0)$. Show that p has no conjugate points in M.

Solution:

Let $q=\left(q_{1}, q_{2}, q_{3}\right) \neq p$ be any point in M. Denote by $\Pi \in \mathbb{R}^{3}$ the 2 -dimensional plane spanned by q and the z-axis. It is easy to check that there is a geodesic $c(t) \in M \cap \Pi$ with $c(0)=p$, $c\left(t_{1}\right)=q$. Moreover, the argument used in class (vertical geodesics in \mathbb{H}^{2}) shows that $c(t)$ is a minimal geodesic between p and q. By Theorem 9.24 this implies that for any $t_{0} \in\left(0, t_{1}\right)$ the point $c\left(t_{0}\right)$ is not conjugate to p.
Rotating the whole picture around the z-axis (this is clearly an isometry of M) we see that p has no conjugate points in a ball $z<q_{3}$, so taking q far enough from p we can prove that p has no conjugate points in a ball of any size centered at p.
7.3. Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant derivative, see Exercise 9.3. T is called a parallel tensor if $\nabla T=0$.
(a) Assume that $T_{1}, T_{2}: \mathfrak{X} \times \mathfrak{X} \rightarrow C^{\infty}(M)$ are parallel tensors. Show that the tensor $T: \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \rightarrow C^{\infty}(M)$, defined as

$$
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right)
$$

is also parallel.
(b) Use (a) to show that $\nabla R^{\prime}=0$ for the tensor

$$
R^{\prime}(X, Y, Z, W)=\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle
$$

(c) Use Exercise 3.4 and (b) to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$
R(X, Y, Z, W):=\langle R(X, Y) Z, W\rangle
$$

Solution:

(a) We have

$$
\begin{aligned}
& \nabla T\left(X_{1}, X_{2}, X_{3}, X_{4}, Y\right)= \\
& \qquad \begin{aligned}
= & Y\left(T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right)\right)-\sum_{i=1}^{4} T\left(X_{1}, \ldots, \nabla_{Y} X_{i}, \ldots, X_{4}\right)= \\
= & T_{1}\left(X_{1}, X_{2}\right) \underbrace{\left(Y\left(T_{2}\left(X_{3}, X_{4}\right)\right)-T_{2}\left(\nabla_{Y} X_{3}\right)-T_{2}\left(\nabla_{Y} X_{4}\right)\right)}_{=\nabla T_{2}\left(X_{3}, X_{4}, Y\right)=0}+ \\
& +T_{2}\left(X_{3}, X_{4}\right) \underbrace{\left(Y\left(T_{1}\left(X_{1}, X_{2}\right)\right)-T_{1}\left(\nabla_{Y} X_{1}\right)-T_{1}\left(\nabla_{Y} X_{2}\right)\right)}_{=\nabla T_{1}\left(X_{1}, X_{2}, Y\right)=0}=0 .
\end{aligned}
\end{aligned}
$$

(b) Let $T(X, Y)=\langle X, Y\rangle$. Since ∇ is Riemannian, we have

$$
\nabla T(X, Y, Z)=Z(\langle X, Y\rangle)-\left\langle\nabla_{Z} X, Y\right\rangle-\left\langle X, \nabla_{Z} Y\right\rangle=0
$$

Note that $R^{\prime}(X, Y, Z, W)=T(X, W) T(Y, Z)-T(X, Z) T(Y, W)$. Part (a) implies then that we have $\nabla R^{\prime}=0$.
(c) If (M, g) is a manifold with constant sectional curvature $K_{0} \in \mathbb{R}$, we have by Exercise 3.4

$$
R(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle=K_{0}(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle)=K_{0} R^{\prime}(X, Y, Z, W)
$$

Then $\nabla R=K_{0} \nabla R^{\prime}=0$ follows from (b).

