Riemannian Geometry IV, Homework 7 (Week 17)

Due date for starred problems: Wednesday, March 11.
7.1. (\star) Let M be a Riemannian manifold of non-positive sectional curvature, i.e. $K(\Pi) \leq 0$ for any 2 -plane $\Pi \subset T M$.
(a) Let $c:[a, b] \rightarrow M$ be a geodesic and let J be a Jacobi field along c. Let $f(t)=$ $\|J(t)\|^{2}$. Show that $f^{\prime \prime}(t) \geq 0$, i.e., f is a convex function.
(b) Derive from (a) that M does not admit conjugate points.
7.2. (\star) Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z\right\}$ be a paraboloid of revolution with metric induced by \mathbb{R}^{3}. Let $p=(0,0,0)$. Show that p has no conjugate points in M.
7.3. Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant derivative, see Exercise 9.3. T is called a parallel tensor if $\nabla T=0$.
(a) Assume that $T_{1}, T_{2}: \mathfrak{X} \times \mathfrak{X} \rightarrow C^{\infty}(M)$ are parallel tensors. Show that the tensor $T: \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \rightarrow C^{\infty}(M)$, defined as

$$
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right),
$$

is also parallel.
(b) Use (a) to show that $\nabla R^{\prime}=0$ for the tensor

$$
R^{\prime}(X, Y, Z, W)=\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle .
$$

(c) Use Exercise 3.4 and (b) to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$
R(X, Y, Z, W):=\langle R(X, Y) Z, W\rangle
$$

