Riemannian Geometry IV, Solutions 8 (Week 18)

8.1. Recall that a Riemannian manifold is called homogeneous if the isometry group of M acts on M transitively, i.e. for every $p, q \in M$ there exists an isometry of M taking p to q. Show that a homogeneous manifold is complete.

Solution: According to the theorem of Hopf - Rinow, it suffices to show that M is geodesically complete. Suppose that some geodesic $\gamma(t)=\exp _{p}(t v),\|v\|=1$ is not defined on \mathbb{R}, let a be the supremum of all τ such that $\gamma(\tau)$ is defined. We need to show that it is possible to extend $\gamma(t)$ to an interval $(a-\varepsilon, a+\varepsilon)$ for some $\varepsilon>0$.
Take arbitrary point $q \in M$. There exists $\delta>0$ such that the exponential map on $B_{\delta}\left(0_{q}\right)$ is a diffeomorphism. Let f be an isometry of M taking q to $\gamma(a-\delta / 2)$. Denote $w=D f^{-1} \gamma^{\prime}(a-\delta / 2)$. Then the geodesic $f\left(\exp _{q}(w t)\right)$ coincides with $\gamma(a-\delta / 2+t)$ for $0 \leq t<\delta / 2$. However, due to the choice of δ, the geodesic $\exp _{q}(w t)$ is defined for all $|t|<\delta$. Therefore, we can define $\gamma(a-\delta / 2+t)=f\left(\exp _{q}(w t)\right)$ for $\delta / 2 \leq t<\delta$, and thus we extend the geodesic γ past $t=a$.
8.2. Let (M, g) be a Riemannian manifold and $v_{1}, \ldots, v_{n} \in T_{p} M$ be an orthonormal basis. We know from Exercise 10.4 for the geodesic normal coordinates $\varphi: B_{\epsilon}(p) \rightarrow B_{\epsilon}(0) \subset \mathbb{R}^{n}$,

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum x_{i} v_{i}\right)
$$

that $\left.\frac{\partial}{\partial x_{i}}\right|_{p}=v_{i}$ and $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=0$. Define an orthonormal frame $E_{1}, \ldots, E_{n}: B_{\epsilon}(p) \rightarrow T M$ by Gram - Schmidt orthonormalization, i.e.,

$$
\begin{aligned}
F_{1}(q) & :=\left.\frac{\partial}{\partial x_{1}}\right|_{q}, \quad E_{1}(q):=\frac{1}{\left\|F_{1}(q)\right\|} F_{1}(q), \\
& \vdots \\
F_{k}(q) & :=\left.\frac{\partial}{\partial x_{k}}\right|_{q}-\sum_{j=1}^{k-1}\left\langle\left.\frac{\partial}{\partial x_{k}}\right|_{q}, E_{j}(q)\right\rangle E_{j}(q), \quad E_{k}(q):=\frac{1}{\left\|F_{k}(q)\right\|} F_{k}(q),
\end{aligned}
$$

By construction, we have $E_{i}(p)=v_{i}$ and $E_{1}(q), \ldots, E_{n}(q)$ are orthonormal in $T_{q} M$ for all $q \in B_{\epsilon}(p)$.
(a) Prove by induction on k that

$$
\begin{aligned}
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k}\right)(p) & =0 \\
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k}, F_{k}\right\rangle^{-1 / 2}(p) & =0 \\
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k}\right)(p) & =0
\end{aligned}
$$

for all $i \in\{1, \ldots, n\}$.
(b) Show that

$$
\left(\nabla_{E_{i}} E_{j}\right)(p)=0
$$

for all $i, j \in\{1, \ldots, n\}$.

Solution:

(a) Induction proof for

$$
\begin{align*}
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k}\right)(p) & =0, \tag{1}\\
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k}, F_{k}\right\rangle^{-1 / 2}(p) & =0, \tag{2}\\
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k}\right)(p) & =0, \tag{3}
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$.
One easily checks (1), (2), (3) for $k=1$. Assume all three equations hold for k. Then we obtain

$$
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k+1}\right)(p)=\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{k+1}}\right)(p)-\left.\frac{\partial}{\partial x_{i}}\right|_{p} \sum_{j=1}^{k}\left\langle\frac{\partial}{\partial x_{k+1}}, E_{j}\right\rangle E_{j} .
$$

Using at the right hand side the product rule, the Riemannian property of the Levi-Civita connection, and the induction hypothesis $\nabla_{\frac{\partial}{\partial x_{i}}} E_{j}(p)=0$ for $1 \leq j \leq k$, we conclude that the whole expression vanishes. Next, we obtain

$$
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k+1}, F_{k+1}\right\rangle^{-1 / 2}(p)=-\frac{1}{\left\|F_{k+1}(p)\right\|^{3}}\left\langle\nabla_{\frac{\partial}{\partial x_{i}}} F_{k+1}, F_{k+1}\right\rangle(p),
$$

which implies that also this expression vanishes because of (1). Finally,

$$
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k+1}\right)(p)=\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k+1}, F_{k+1}\right\rangle^{-1 / 2}(p) F_{k+1}(p)+\frac{1}{\left\|F_{k+1}(p)\right\|}\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k+1}\right)(p),
$$

which vanishes again because of (1) and (2). This finishes the induction procedure.
(b) We conclude

$$
\left(\nabla_{E_{i}} E_{j}\right)(p)=\nabla_{E_{i}(p)} E_{j}=0
$$

from (3), since $E_{i}(p)$ is just a linear combination of the basis vectors $\frac{\partial}{\partial x_{k}}$.

8.3. Second Bianchi Identity

Let (M, g) be a Riemannian manifold and R be the curvature tensor, defined by

$$
R(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle
$$

(a) Let $E_{1}, \ldots, E_{n}: B_{\epsilon}(p) \rightarrow T M$ be the orthonormal frame introduced in Exercise 8.2. For simplicity, let $e_{i}=E_{i}(p)$ and $E_{i j}=\left[E_{i}, E_{j}\right]$. Show that

$$
\nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)=\left\langle\nabla_{e_{m}} \nabla_{E_{k}} \nabla_{E_{l}} E_{i}-\nabla_{e_{m}} \nabla_{E_{l}} \nabla_{E_{k}} E_{i}-\nabla_{e_{m}} \nabla_{E_{k l}} E_{i}, e_{j}\right\rangle
$$

(b) Using (a) and the Riemannian curvature tensor, derive

$$
\begin{aligned}
\nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)+\nabla R\left(e_{i}, e_{j}, e_{l}, e_{m}, e_{k}\right)+ & \nabla R\left(e_{i}, e_{j}, e_{m}, e_{k}, e_{l}\right) \\
& =\left\langle\nabla_{\left[E_{m k}, E_{l}\right]+\left[E_{k l}, E_{m}\right]+\left[E_{l m}, E_{k}\right]} E_{i}, e_{j}\right\rangle
\end{aligned}
$$

(c) Use Jacobi identity and linearity to prove the Second Bianchi Identity:

$$
\nabla R(X, Y, Z, W, T)+\nabla R(X, Y, W, T, Z)+\nabla R(X, Y, T, Z, W)=0
$$ for X, Y, Z, W, T vector fields on M.

Solution:

(a) Note that $E_{r s}(p)=\nabla_{e_{r}} E_{s}-\nabla_{e_{s}} E_{r}=0$. Therefore,

$$
\begin{aligned}
& \nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)=e_{m}\left(\left\langle R\left(E_{i}, E_{j}\right) E_{k}, E_{l}\right\rangle\right)=e_{m}\left(\left\langle R\left(E_{k}, E_{l}\right) E_{i}, E_{j}\right\rangle\right) \\
&=\left\langle\nabla_{e_{m}} \nabla_{E_{k}} \nabla_{E_{l}} E_{i}-\nabla_{e_{m}} \nabla_{E_{l}} \nabla_{E_{k}} E_{i}-\nabla_{e_{m}} \nabla_{E_{k l}} E_{i}, e_{j}\right\rangle .
\end{aligned}
$$

(b) (a) implies that

$$
\begin{aligned}
& \nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)+\nabla R\left(e_{i}, e_{j}, e_{l}, e_{m}, e_{k}\right)+\nabla R\left(e_{i}, e_{j}, e_{m}, e_{k}, e_{l}\right) \\
&=\left\langle\nabla_{e_{m}} \nabla_{E_{k}} \nabla_{E_{l}} E_{i}+\nabla_{e_{k}} \nabla_{E_{l}} \nabla_{E_{m}} E_{i}+\nabla_{e_{l}} \nabla_{E_{m}} \nabla_{E_{k}} E_{i}\right. \\
&- \nabla_{e_{m}} \nabla_{E_{l}} \nabla_{E_{k}} E_{i}-\nabla_{e_{l}} \nabla_{E_{k}} \nabla_{E_{m}} E_{i}-\nabla_{e_{k}} \nabla_{E_{m}} \nabla_{E_{l}} E_{i} \\
&\left.\quad-\nabla_{e_{m}} \nabla_{E_{k l}} E_{i}-\nabla_{e_{k}} \nabla_{E_{l m}} E_{i}-\nabla_{e_{l}} \nabla_{E_{m k}} E_{i}, e_{j}\right\rangle \\
&=\left\langle R\left(e_{m}, e_{k}, \nabla_{e_{l}} E_{i}\right)+\nabla_{E_{m k}(p)} \nabla_{E_{l}} E_{i}-\nabla_{e_{l}} \nabla_{E_{m k}} E_{i}\right. \\
&+ R\left(e_{k}, e_{l}, \nabla_{e_{m}} E_{i}\right)+\nabla_{E_{k l}(p)} \nabla_{E_{m}} E_{i}-\nabla_{e_{m}} \nabla_{E_{k l}} E_{i} \\
&\left.\quad+R\left(e_{l}, e_{m}, \nabla_{e_{k}} E_{i}\right)+\nabla_{E_{l m}(p)} \nabla_{E_{k}} E_{i}-\nabla_{e_{k}} \nabla_{E_{l m}} E_{i}, e_{j}\right\rangle .
\end{aligned}
$$

Using $\nabla_{e_{r}} E_{s}=0$, all above curvature terms vanish and this result simplifies to

$$
\begin{aligned}
& \nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)+\nabla R\left(e_{i}, e_{j}, e_{l}, e_{m}, e_{k}\right)+\nabla R\left(e_{i}, e_{j}, e_{m}, e_{k}, e_{l}\right) \\
&=\left\langle R\left(E_{m k}(p), e_{l}, e_{i}\right)+\nabla_{\left[E_{m k}, E_{l}\right]} E_{i}+\right. R\left(E_{k l}(p), e_{m}, e_{i}\right)+\nabla_{\left[E_{k l}, E_{m}\right]} E_{i} \\
&\left.+R\left(E_{l m}(p), e_{k}, e_{i}\right)+\nabla_{\left[E_{l m}, E_{k}\right]} E_{i}, e_{j}\right\rangle .
\end{aligned}
$$

Using $E_{r s}(p)=0$, this simplifies further to

$$
\begin{aligned}
\nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)+\nabla R\left(e_{i}, e_{j}, e_{l}, e_{m}, e_{k}\right)+\nabla R & \left(e_{i}, e_{j}, e_{m}, e_{k}, e_{l}\right) \\
& =\left\langle\nabla_{\left[E_{m k}, E_{l}\right]+\left[E_{k l}, E_{m}\right]+\left[E_{l m}, E_{k}\right]} E_{i}, e_{j}\right\rangle
\end{aligned}
$$

(c) Jacobi identity tell us that $\left[E_{m k}, E_{l}\right]+\left[E_{k l}, E_{m}\right]+\left[E_{l m}, E_{k}\right]=0$, and therefore we obtain

$$
\nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)+\nabla R\left(e_{i}, e_{j}, e_{l}, e_{m}, e_{k}\right)+\nabla R\left(e_{i}, e_{j}, e_{m}, e_{k}, e_{l}\right)=0
$$

Since this holds for any choice of basis vectors in every slot, we obtain the same result for any choice of arbitrary tangent vectors in $T_{p} M$ in each slot, by linearity.

8.4. Schur Theorem

Let (M, g) be a connected Riemannian manifold of dimension $n \geq 3$ with the following property: there is a function $f: M \rightarrow \mathbb{R}$ such that, for every $p \in M$, the sectional curvature of all 2-planes $\Pi \subset T_{p} M$ satisfies

$$
K(\Sigma)=f(p)
$$

(a) Define $R(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle$ and

$$
R^{\prime}(X, Y, Z, W)=\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle .
$$

Use Exercises 3.4 and 7.3 to show that $\nabla R(X, Y, Z, W, U)=(U f) R^{\prime}(X, Y, Z, W)$ (for the definition of the covariant derivative of a tensor, see Exercise 9.3).
(b) Use the Second Bianchi Identity (see Exercise 8.3) to show that

$$
\begin{aligned}
(T f)(\langle X, W\rangle\langle Y, Z\rangle- & \langle X, Z\rangle\langle Y, W\rangle) \\
& +(Z f)(\langle X, T\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, T\rangle) \\
& +(W f)(\langle X, Z\rangle\langle Y, T\rangle-\langle X, T\rangle\langle Y, Z\rangle)=0
\end{aligned}
$$

(c) Fix a point $p \in M$ and choose $X(p), Z(p) \in T_{P} M$ arbitrary. Because $n \geq 3$, we can choose W, Y such that

$$
\langle Z(p), W(p)\rangle_{p}=\langle Z(p), Y(p)\rangle_{p}=\langle Y(p), W(p)\rangle_{p}=0
$$

and $\|Y(p)\|=1$. Choose $T=Y$. Show that this choice yields

$$
\langle(W f)(p) Z(p)-(Z f)(p) W(p), X(p)\rangle(p)=0,
$$

and conclude that we have $(Z f)(p)=0$.
(d) Prove Schur Theorem: show that f is a constant function, i.e., there is a $C \in \mathbb{R}$ such that $f(p)=C$ for all $p \in M$.

Solution:

(a) We know from Exercise 7.3(b) that the tensor R^{\prime} is parallel, i.e., $\nabla R^{\prime}=0$. We conclude from (the proof of) Exercise 3.4 that $R=f R^{\prime}$, and therefore

$$
\nabla R(X, Y, Z, W, U)=(U f) R^{\prime}(X, Y, Z, W)
$$

(b) The Second Bianchi Identity tells us that

$$
\nabla R(X, Y, Z, W, T)+\nabla R(X, Y, W, T, Z)+\nabla R(X, Y, T, Z, W)=0
$$

which yields, using the definition of R^{\prime} :

$$
\left.\begin{array}{rl}
0=(T f)(\langle X, W\rangle\langle Y, Z\rangle & -\langle X, Z\rangle\langle Y, W\rangle) \\
& +(Z f)(\langle X, T\rangle\langle Y, W\rangle-
\end{array} \quad\langle X, W\rangle\langle Y, T\rangle\right) .
$$

(c) Using the relations $\langle Z(p), W(p)\rangle=\langle Z(p), Y(p)\rangle=\langle Y(p), W(p)\rangle=0,\|Y(p)\|=1$ and $T=Y$, we conclude that, at p

$$
\begin{aligned}
0=(T f)(p)(\langle X(p), & W(p)\rangle \cdot 0-\langle X(p), Z(p)\rangle \cdot 0) \\
+ & (Z f)(p)(\langle X(p), T(p)\rangle \cdot 0-\langle X(p), W(p)\rangle \cdot 1) \\
+ & (W f)(p)(\langle X(p), Z(p)\rangle \cdot 1-\langle X(p), T(p)\rangle \cdot 0) \\
& =\langle(W f)(p) Z(p)-(Z f)(p) W(p), X(p)\rangle .
\end{aligned}
$$

(d) Since $Z(p)$ and $W(p)$ are linearly independent and $X(p) \in T_{P} M$ was arbitrary, we conclude that both $(W f)(p)=0$ and $(Z f)(p)=0$. SInce $Z(p)$ was arbitrary, f must be locally constant. Since M is connected, f is globally constant.

