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1 Smooth manifolds

“Smooth” means “infinitely differentiable”, C∞.

Definition 1.1. LetM be a set. An n-dimensional smooth atlas onM is a collection of triples (Uα, Vα, ϕα),
where α ∈ I for some indexing set I, s.t.

(a) Uα ⊆M ; Vα ⊆ Rn is open ∀α ∈ I;

(b)
⋃
α∈I Uα = M ;

(c) Each ϕα : Uα → Vα is a bijection;

(d) For every α, β ∈ I such that Uα ∩ Uβ 6= ∅ the composition ϕβ ◦ ϕ−1α
∣∣
ϕα(Uα∩Uβ)

: ϕα(Uα ∩ Uβ) →
ϕβ(Uα ∩ Uβ) is a smooth map for all ordered pairs (α, β), where α, β ∈ I.

The number n is called the dimension of M , the maps ϕα are called coordinate charts, the compositions
ϕβ ◦ ϕ−1α are called transition maps or changes of coordinates.

Example 1.2. Two atlases on a circle S1 ⊂ R2.

Definition 1.3. Let M have a smooth atlas. A set A ⊆M is open if for every α ∈ I the set ϕα(A∩Uα)
is open in Rn. If A ⊂M is open and x ∈ A, A is called an open neighborhood of x.

Definition 1.4. M is called Hausdorff if for each x, y ∈ M , x 6= y, there exist open sets Ax 3 x and
Ay 3 y such that Ax ∩Ay = ∅.

Example 1.5. An example of a non-Hausdorff space: a line with a double point.

Definition 1.6. M is called a smooth n-dimensional manifold if M has a countable n-dimensional smooth
atlas and M is Hausdorff

Example 1.7. Atlas for a square in R2.

Example. Examples of smooth manifolds: torus, Klein bottle, 3-torus, real projective space.

Definition 1.8. Let U ⊆ Rn be open, m < n, and let f : U → Rm be a smooth map (i.e., all the partial
derivatives are smooth). Let Df(x) = ( ∂fi∂xj

) be the matrix of partial derivatives at x ∈ U (differential or

Jacobi matrix). Then

(a) x ∈ Rn is a regular point of f if rk Df(x) = m (i.e., Df(x) has a maximal rank);

(b) y ∈ Rm is a regular value of f if the full preimage f−1(y) consists of regular points only.

Theorem 1.9 (Corollary of Implicit Function Theorem). Let U ⊂ Rn be open, f : U → Rm smooth,
m < n. If y ∈ f(U) is a regular value of f then f−1(y) ⊂ U ⊂ Rn is an (n −m)-dimensional smooth
manifold.

Examples 1.10–1.11. An ellipsoid as a smooth manifold; matrix groups are smooth manifolds.
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2 Tangent space

Definition 2.1. Let f : Mm → Nn be a map of smooth manifolds with atlases (Ui, ϕi(Ui), ϕi)i∈I and
(Wj , ψj(Wj), ψj)j∈J . The map f is smooth if it induces smooth maps between open sets in Rm and Rn,
i.e. if ψj ◦ f ◦ ϕ−1i

∣∣
ϕi(Ui∩f−1(Wj∩f(Ui)))

is smooth for all i ∈ I, j ∈ J .

If f is a bijection and both f and f−1 are smooth then f is called a diffeomorphism.

Definition 2.2. A derivation on the set C∞(M,p) of all smooth functions on M defined in a neighborhood
of p is a linear map δ : C∞(M,p)→ R, s.t. for all f, g ∈ C∞(M,p) holds δ(f · g) = f(p)δ(g) + δ(f)g(p)
(the Leibniz rule).

The set of all derivations is denoted by D∞(M,p). This is a real vector space (exercise).

Definition 2.3. The space D∞(M,p) is called the tangent space of M at p, denoted TpM . Derivations
are tangent vectors.

Definition 2.4. Let γ : (a, b) → M be a smooth curve in M , t0 ∈ (a, b), γ(t0) = p and f ∈ C∞(M,p).
Define the directional derivative γ′(t0)(f) ∈ R of f at p along γ by

γ′(t0)(f) = lim
s→0

f(γ(t0 + s))− f(γ(t0))

s
= (f ◦ γ)′(t0) =

d

dt

∣∣∣∣
t=t0

(f ◦ γ)

Directional derivatives are derivations (exercise).

Remark. Two curves γ1 and γ2 through p may define the same directional derivative.

Notation. Let Mn be a manifold, ϕ : U → V ⊆ Rn a chart at p ∈ U ⊂ M . For i = 1, . . . , n define the
curves γi(t) = ϕ−1(ϕ(p) + eit) for small t > 0 (here {ei} is a basis of Rn).

Definition 2.5. Define ∂
∂xi

∣∣
p

= γ′i(0), i.e.

∂

∂xi

∣∣∣∣
p

(f) = (f ◦ γi)′(0) =
d

dt
(f ◦ ϕ−1)(ϕ(p) + tei)

∣∣
t=0

=
∂

∂xi
(f ◦ ϕ−1)(ϕ(p)),

where ∂
∂xi

on the right is just a classical partial derivative.

By definition, we have

〈 ∂
∂x1

, . . . ,
∂

∂xn
〉 ⊆ {Directional derivatives} ⊆ D∞(M,p)

Proposition 2.6. 〈 ∂
∂x1

, . . . , ∂
∂xn
〉 = {Directional derivatives} = D∞(M,p).

Lemma 2.7. Let ϕ : U ⊆ M → Rn be a chart, ϕ(p) = 0. Let γ̃(t) = (
∑n

i=1 kiei) t : R → Rn be a line,
where {e1, . . . , en} is a basis, ki ∈ R. Define γ(t) = ϕ−1 ◦ γ̃(t) ∈M . Then γ′(0) =

∑n
i=1 ki

∂
∂xi

.

Example 2.8. For the group SLn(R) = {A ∈ Mn | detA = 1}, the tangent space at I is the set of all
trace-free matrices: TI(SLn(R)) = {X ∈Mn(R) | tr X = 0}.

Proposition 2.9. (Change of basis for TpM). Let Mn be a smooth manifold, ϕα : Uα → Vα a

chart, (xα1 , . . . , x
α
n) the coordinates in Vα. Let p ∈ Uα ∩ Uβ. Then ∂

∂xαj

∣∣∣
p

=
∑n

i=1
∂xβi
∂xαj

∂
∂xαi

, where

∂xβi
∂xαj

=
∂(ϕiβ◦ϕ

−1
α )

∂xαj
(ϕ(p)), ϕiβ = πi ◦ ϕβ.
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Definition 2.10. Let M,N be smooth manifolds, let f : M → N be a smooth map. Define a linear map
Df(p) : TpM → Tf(p)N called the differential of f at p by Df(p)γ′(0) = (f ◦ γ)′(0) for a smooth curve
γ ∈M with γ(0) = p.

Remark. Df(p) is well defined (exercise).

Lemma 2.11. (a) If ϕ is a chart, then Dϕ(p) : TpM → Tϕ(p)Rn is the identity map taking ∂
∂xi

∣∣∣
p

to ∂
∂xi

(b) For M
f→ N

g→ L holds D(g ◦ f)(p) = Dg(f(p)) ◦Df(p).

Example 2.12. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.13. Let M be a smooth manifold. A disjoint union TM = ∪p∈MTpM of tangent spaces to
each p ∈M is called a tangent bundle.

There is a canonical projection Π : TM →M , Π(v) = p for every v ∈ TpM .

Proposition 2.14. The tangent bundle TM has a structure of 2n-dimensional smooth manifold, s.t.
Π : TM →M is a smooth map.

Definition 2.15. A vector field X on a smooth manifold M is a smooth map X : M → TM such that
∀p ∈M X(p) ∈ TpM

The set of all vector fields on M is denoted by X(M).

Remark 2.16. (a) X(M) has a structure of a vector space.

(b) Vector fields can be multiplied by smooth functions.

(c) Taking a coordinate chart (U,ϕ = (x1, . . . , xn)), any vector field X can be written in U as X(p) =∑n
i=1 fi(p)

∂
∂xi
∈ TpM , where {fi} are some smooth functions on U .

Examples 2.17–2.18. Vector fields on R2 and 2-sphere.

Remark 2.19. Observe that for X =
∑
ai(p)

∂
∂xi
∈ X(M) we have X(p) ∈ TpM , i.e. X(p) is a directional

derivative at p ∈ M . Thus, we can use the vector field to differentiate a function f ∈ C∞(M) by
(Xf)(p) =

∑
ai(p)

∂f
∂xi

∣∣
p
, so that we get another smooth function Xf ∈ C∞(M).

Proposition 2.20. Let X,Y ∈ X(M). Then there exists a unique vector field Z ∈ X(M) such that
Z(f) = X(Y (f))− Y (X(f)) for all f ∈ C∞(M).

This vector field Z = XY − Y X is denoted by [X,Y ] and called the Lie bracket of X and Y .

Proposition 2.21. Properties of Lie bracket:

(a) [X,Y ] = −[Y,X];

(b) [aX + bY, Z] = a[X,Z] + b[Y,Z] for a, b ∈ R;

(c) [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacobi identity);

(d) [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X for f, g ∈ C∞(M).
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Definition 2.22. A Lie algebra is a vector space g with a binary operation [·, ·] : g × g → g called the
Lie bracket which satisfies first three properties from Proposition 2.21.

Proposition 2.21 implies that X(M) is a Lie algebra.

Theorem 2.23 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an
even-dimensional sphere S2m.
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