Michaelmas 2014

Durham University Pavel Tumarkin

Riemannian Geometry IV, Term 1 (Sections 1–2)

1 Smooth manifolds

"Smooth" means "infinitely differentiable", C^{∞} .

Definition 1.1. Let M be a set. An <u>*n*-dimensional smooth atlas</u> on M is a collection of triples $(U_{\alpha}, V_{\alpha}, \varphi_{\alpha})$, where $\alpha \in I$ for some indexing set I, s.t.

- (a) $U_{\alpha} \subseteq M; V_{\alpha} \subseteq \mathbb{R}^n$ is open $\forall \alpha \in I;$
- (b) $\bigcup_{\alpha \in I} U_{\alpha} = M;$
- (c) Each $\varphi_{\alpha}: U_{\alpha} \to V_{\alpha}$ is a bijection;
- (d) For every $\alpha, \beta \in I$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the composition $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}|_{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is a smooth map for all ordered pairs (α, β) , where $\alpha, \beta \in I$.

The number n is called the dimension of M, the maps φ_{α} are called <u>coordinate charts</u>, the compositions $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ are called transition maps or changes of coordinates.

Example 1.2. Two atlases on a circle $S^1 \subset \mathbb{R}^2$.

Definition 1.3. Let M have a smooth atlas. A set $A \subseteq M$ is open if for every $\alpha \in I$ the set $\varphi_{\alpha}(A \cap U_{\alpha})$ is open in \mathbb{R}^n . If $A \subset M$ is open and $x \in A$, A is called an open neighborhood of x.

Definition 1.4. *M* is called <u>Hausdorff</u> if for each $x, y \in M$, $x \neq y$, there exist open sets $A_x \ni x$ and $A_y \ni y$ such that $A_x \cap A_y = \emptyset$.

Example 1.5. An example of a non-Hausdorff space: a line with a double point.

Definition 1.6. M is called a <u>smooth n-dimensional manifold</u> if M has a countable n-dimensional smooth atlas and M is Hausdorff

Example 1.7. Atlas for a square in \mathbb{R}^2 .

Example. Examples of smooth manifolds: torus, Klein bottle, 3-torus, real projective space.

Definition 1.8. Let $U \subseteq \mathbb{R}^n$ be open, m < n, and let $f: U \to \mathbb{R}^m$ be a smooth map (i.e., all the partial derivatives are smooth). Let $Df(x) = (\frac{\partial f_i}{\partial x_j})$ be the matrix of partial derivatives at $x \in U$ (differential or Jacobi matrix). Then

(a) $x \in \mathbb{R}^n$ is a regular point of f if $\operatorname{rk} Df(x) = m$ (i.e., Df(x) has a maximal rank);

(b) $y \in \mathbb{R}^m$ is a regular value of f if the full preimage $f^{-1}(y)$ consists of regular points only.

Theorem 1.9 (Corollary of Implicit Function Theorem). Let $U \subset \mathbb{R}^n$ be open, $f : U \to \mathbb{R}^m$ smooth, m < n. If $y \in f(U)$ is a regular value of f then $f^{-1}(y) \subset U \subset \mathbb{R}^n$ is an (n-m)-dimensional smooth manifold.

Examples 1.10–1.11. An ellipsoid as a smooth manifold; matrix groups are smooth manifolds.

2 Tangent space

Definition 2.1. Let $f: M^m \to N^n$ be a map of smooth manifolds with atlases $(U_i, \varphi_i(U_i), \varphi_i)_{i \in I}$ and $(W_j, \psi_j(W_j), \psi_j)_{j \in J}$. The map f is <u>smooth</u> if it induces smooth maps between open sets in \mathbb{R}^m and \mathbb{R}^n , i.e. if $\psi_j \circ f \circ \varphi_i^{-1}|_{\varphi_i(U_i \cap f^{-1}(W_j \cap f(U_i)))}$ is smooth for all $i \in I, j \in J$.

If f is a bijection and both f and f^{-1} are smooth then f is called a diffeomorphism.

Definition 2.2. A derivation on the set $C^{\infty}(M, p)$ of all smooth functions on M defined in a neighborhood of p is a linear map $\delta : C^{\infty}(M, p) \to \mathbb{R}$, s.t. for all $f, g \in C^{\infty}(M, p)$ holds $\delta(f \cdot g) = f(p)\delta(g) + \delta(f)g(p)$ (the Leibniz rule).

The set of all derivations is denoted by $\mathcal{D}^{\infty}(M, p)$. This is a real vector space (exercise).

Definition 2.3. The space $\mathcal{D}^{\infty}(M, p)$ is called the <u>tangent space</u> of M at p, denoted T_pM . Derivations are tangent vectors.

Definition 2.4. Let $\gamma : (a, b) \to M$ be a smooth curve in M, $t_0 \in (a, b)$, $\gamma(t_0) = p$ and $f \in C^{\infty}(M, p)$. Define the <u>directional derivative</u> $\gamma'(t_0)(f) \in \mathbb{R}$ of f at p along γ by

$$\gamma'(t_0)(f) = \lim_{s \to 0} \frac{f(\gamma(t_0 + s)) - f(\gamma(t_0))}{s} = (f \circ \gamma)'(t_0) = \frac{d}{dt}\Big|_{t=t_0} (f \circ \gamma)$$

Directional derivatives are derivations (exercise).

Remark. Two curves γ_1 and γ_2 through p may define the same directional derivative.

Notation. Let M^n be a manifold, $\varphi : U \to V \subseteq \mathbb{R}^n$ a chart at $p \in U \subset M$. For i = 1, ..., n define the curves $\gamma_i(t) = \varphi^{-1}(\varphi(p) + e_i t)$ for small t > 0 (here $\{e_i\}$ is a basis of \mathbb{R}^n).

Definition 2.5. Define $\frac{\partial}{\partial x_i}\Big|_p = \gamma'_i(0)$, i.e.

$$\frac{\partial}{\partial x_i}\Big|_p (f) = (f \circ \gamma_i)'(0) = \frac{d}{dt} (f \circ \varphi^{-1})(\varphi(p) + te_i)\Big|_{t=0} = \frac{\partial}{\partial x_i} (f \circ \varphi^{-1})(\varphi(p)),$$

where $\frac{\partial}{\partial x_i}$ on the right is just a classical partial derivative.

By definition, we have

$$\langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle \subseteq \{ \text{Directional derivatives} \} \subseteq \mathcal{D}^{\infty}(M, p)$$

Proposition 2.6. $\langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle = \{ Directional \ derivatives \} = \mathcal{D}^{\infty}(M, p).$

Lemma 2.7. Let $\varphi : U \subseteq M \to \mathbb{R}^n$ be a chart, $\varphi(p) = 0$. Let $\tilde{\gamma}(t) = (\sum_{i=1}^n k_i e_i) t : \mathbb{R} \to \mathbb{R}^n$ be a line, where $\{e_1, \ldots, e_n\}$ is a basis, $k_i \in \mathbb{R}$. Define $\gamma(t) = \varphi^{-1} \circ \tilde{\gamma}(t) \in M$. Then $\gamma'(0) = \sum_{i=1}^n k_i \frac{\partial}{\partial x_i}$.

Example 2.8. For the group $SL_n(\mathbb{R}) = \{A \in M_n \mid \det A = 1\}$, the tangent space at I is the set of all trace-free matrices: $T_I(SL_n(\mathbb{R})) = \{X \in M_n(\mathbb{R}) \mid \operatorname{tr} X = 0\}$.

Proposition 2.9. (Change of basis for T_pM). Let M^n be a smooth manifold, $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$ a chart, $(x_1^{\alpha}, \ldots, x_n^{\alpha})$ the coordinates in V_{α} . Let $p \in U_{\alpha} \cap U_{\beta}$. Then $\frac{\partial}{\partial x_j^{\alpha}}\Big|_p = \sum_{i=1}^n \frac{\partial x_i^{\beta}}{\partial x_i^{\alpha}} \frac{\partial}{\partial x_i^{\alpha}}$, where $\frac{\partial x_i^{\beta}}{\partial x_j^{\alpha}} = \frac{\partial(\varphi_{\beta}^i \circ \varphi_{\alpha}^{-1})}{\partial x_j^{\alpha}}(\varphi(p)), \ \varphi_{\beta}^i = \pi_i \circ \varphi_{\beta}.$

Definition 2.10. Let M, N be smooth manifolds, let $f: M \to N$ be a smooth map. Define a linear map $Df(p): T_pM \to T_{f(p)}N$ called the <u>differential</u> of f at p by $Df(p)\gamma'(0) = (f \circ \gamma)'(0)$ for a smooth curve $\gamma \in M$ with $\gamma(0) = p$.

Remark. Df(p) is well defined (exercise).

Lemma 2.11. (a) If φ is a chart, then $D\varphi(p): T_pM \to T_{\varphi(p)}\mathbb{R}^n$ is the identity map taking $\frac{\partial}{\partial x_i}\Big|_p$ to $\frac{\partial}{\partial x_i}$

(b) For $M \xrightarrow{f} N \xrightarrow{g} L$ holds $D(g \circ f)(p) = Dg(f(p)) \circ Df(p)$.

Example 2.12. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.13. Let M be a smooth manifold. A disjoint union $TM = \bigcup_{p \in M} T_p M$ of tangent spaces to each $p \in M$ is called a tangent bundle.

There is a canonical projection Π : $TM \to M$, $\Pi(v) = p$ for every $v \in T_pM$.

Proposition 2.14. The tangent bundle TM has a structure of 2n-dimensional smooth manifold, s.t. $\Pi: TM \to M$ is a smooth map.

Definition 2.15. A vector field X on a smooth manifold M is a smooth map $X : M \to TM$ such that $\forall p \in M \ X(p) \in T_pM$

The set of all vector fields on M is denoted by $\mathfrak{X}(M)$.

Remark 2.16. (a) $\mathfrak{X}(M)$ has a structure of a vector space.

- (b) Vector fields can be multiplied by smooth functions.
- (c) Taking a coordinate chart $(U, \varphi = (x_1, \dots, x_n))$, any vector field X can be written in U as $X(p) = \sum_{i=1}^{n} f_i(p) \frac{\partial}{\partial x_i} \in T_p M$, where $\{f_i\}$ are some smooth functions on U.

Examples 2.17–2.18. Vector fields on \mathbb{R}^2 and 2-sphere.

Remark 2.19. Observe that for $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(M)$ we have $X(p) \in T_pM$, i.e. X(p) is a directional derivative at $p \in M$. Thus, we can use the vector field to differentiate a function $f \in C^{\infty}(M)$ by $(Xf)(p) = \sum a_i(p) \frac{\partial f}{\partial x_i}|_p$, so that we get another smooth function $Xf \in C^{\infty}(M)$.

Proposition 2.20. Let $X, Y \in \mathfrak{X}(M)$. Then there exists a unique vector field $Z \in \mathfrak{X}(M)$ such that Z(f) = X(Y(f)) - Y(X(f)) for all $f \in C^{\infty}(M)$.

This vector field Z = XY - YX is denoted by [X, Y] and called the <u>Lie bracket</u> of X and Y.

Proposition 2.21. Properties of Lie bracket:

- (a) [X,Y] = -[Y,X];
- (b) [aX + bY, Z] = a[X, Z] + b[Y, Z] for $a, b \in \mathbb{R}$;
- (c) [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 (Jacobi identity);
- (d) [fX, gY] = fg[X, Y] + f(Xg)Y g(Yf)X for $f, g \in C^{\infty}(M)$.

Definition 2.22. A Lie algebra is a vector space \mathfrak{g} with a binary operation $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ called the Lie bracket which satisfies first three properties from Proposition 2.21.

Proposition 2.21 implies that $\mathfrak{X}(M)$ is a Lie algebra.

Theorem 2.23 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an even-dimensional sphere S^{2m} .