Michaelmas 2014

Durham University Pavel Tumarkin

Riemannian Geometry IV, Term 1 (Sections 3–4)

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A <u>Riemannian metric</u> $g_p(\cdot, \cdot)$ or $\langle \cdot, \cdot \rangle_p$ is a family of real inner products $g_p: T_pM \times T_pM \to \mathbb{R}$ depending smoothly on $p \in M$. A smooth manifold M with a Riemannian metric g is called a <u>Riemannian manifold</u> (M, g).

Examples 3.2–3.3. Euclidean metric on \mathbb{R}^n , induced metric on $M \subset \mathbb{R}^n$.

Definition 3.4. Let (M, g) be a Riemannian manifold. For $v \in T_p M$ define the length of v by $0 \le ||v||_g = \sqrt{g_p(v, v)}$.

Example 3.5. Three models of hyperbolic geometry:

model	notation	M	g
Hyperboloid	\mathbb{W}^n	$\{y \in \mathbb{R}^{n+1} \mid q(y,y) = -1, y_{n+1} > 0\}$ where $q(x,y) = \sum_{i=1}^{n} x_i y_i - x_{n+1} y_{n+1}$	$g_x(v,w) = q(v,w)$
Poincaré ball	\mathbb{B}^n	$\{x \in \mathbb{R}^n \mid \ x\ ^2 = \sum_{i=1}^n x_i^2 < 1\}$	$g_x(v,w) = \frac{4}{(1-\ x\ ^2)^2} \langle v,w \rangle$
Upper half-space	\mathbb{H}^n	$\{x \in \mathbb{R}^n \mid x_n > 0\}$	$g_x(v,w) = \frac{1}{x_n^2} \langle v,w \rangle$

Definition 3.6. Given two vector spaces V_1, V_2 with real inner products $(V_i, \langle \cdot, \cdot \rangle_i)$, an isomorphism $T: V_1 \to V_2$ of vector spaces is a linear isometry if $\langle Tv, Tw \rangle_2 = \langle v, w \rangle_1$ for all $v, w \in V_1$.

This is equivalent to preserving the lengths of all vectors (since $\langle v, w \rangle = \frac{1}{2}(\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle)).$

Definition 3.7. A diffeomorphism $f : (M, g) \to (N, h)$ of two Riemannian manifolds is an isometry if $Df(p) : T_pM \to T_{f(p)}N$ is a linear isometry for all $p \in M$.

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold (M^m, g) the exists an isometric embedding into \mathbb{R}^k for some $k \in \mathbb{N}$. If M is compact, there exists such $k \leq \frac{m(3m+1)}{2}$, and if M is not compact, there is such $k \leq \frac{m(m+1)(3m+1)}{2}$.

Definition 3.9. (M,g) is a Riemannian manifold, $c : [a,b] \to M$ is a smooth curve. The length L(c) of c is defined by $L(c) = \int_a^b \|c'(t)\| dt$, where $\|c'(t)\| = \langle c'(t), c'(t) \rangle_{c(t)}^{1/2}$. The length of a piecewise-smooth curve is defined as the sum of lengths of its smooth pieces.

Theorem 3.10 (Reparametrization). Let $\varphi : [c,d] \to [a,b]$ be a strictly monotonic smooth function, $\varphi' \neq 0$, and let $\gamma : [a,b] \to M$ be a smooth curve. Then for $\tilde{\gamma} = \gamma \circ \varphi : [c,d] \to M$ holds $L(\gamma) = L(\tilde{\gamma})$.

Definition 3.11. A smooth curve $c : [a, b] \to M$ is arc-length parametrized if $||c'(t)|| \equiv 1$.

Proposition 3.12 (evident). If a curve $c : [a, b] \to M$ is arc-length parametrized, then L(c) = b - a.

Proposition 3.13. Every curve has an arc-length parametrization.

Example 3.14. Length of vertical segments in **H**. Shortest paths between points on vertical rays.

Definition 3.15. Define a <u>distance</u> $d: M \times M \to [0, \infty)$ on (M, g) by $d(p, q) = \inf_{\gamma} \{L(\gamma)\}$, where γ is a piecewise smooth curve connecting p and q.

Remark. (M, d) is a metric space.

Example 3.16. Induced metric on $S^1 \subset \mathbb{R}^2$.

Definition 3.17. If (M, g) is a Riemannian manifold, then any subset $A \subset M$ is also a metric space with the <u>induced metric</u> $d|_{A \times A} : A \times A \to [0, \infty)$ defined by $d(p, q) = \inf_{\gamma} \{L(\gamma) \mid \gamma : [a, b] \to A, \gamma(a) = p, \gamma(b) = q\}$, where the length $L(\gamma)$ is computed in M.

Example 3.18. Punctured Riemann sphere: \mathbb{R}^n with metric $g_x(v, w) = \frac{4}{(1+\|x\|^2)^2} \langle v, w \rangle$.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(\mathbb{R}^n)$ and a vector $v \in T_p \mathbb{R}^n$ define the covariant derivative of X in direction v in \mathbb{R}^n by $\nabla_v(X) = \lim_{t \to 0} \frac{X(p+tv) - X(p)}{t} = \sum v(a_i) \frac{\partial}{\partial x_i} \Big|_p \in T_p \mathbb{R}^n$.

Proposition 4.2. The covariant derivative $\nabla_v X$ in \mathbb{R}^n satisfies all the properties (a)–(e) listed below in Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), (X, Y) \mapsto \nabla_X Y$ is <u>affine connection</u> if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds

- (a) $\nabla_X(Y+Z) = \nabla_X(Y) + \nabla_X(Z)$
- (b) $\nabla_X(fY) = X(f)Y(p) + f(p)\nabla_X Y$
- (c) $\nabla_{fX+gY}Z = f\nabla_X Z + g\nabla_Y Z$

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique affine connection ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:

(d) $v(\langle X, Y \rangle) = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$ (Riemannian property); (e) $\nabla_X Y - \nabla_Y X = [X, Y]$ (∇ is torsion-free).

This connection is called <u>Levi-Civita connection</u> of (M, g).

Remark 4.5. Properties of Levi-Civita connection in \mathbb{R}^n and in $M \subset \mathbb{R}^n$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let $\varphi : U \to V$ be a coordinate chart with coordinates $\varphi = (x_1, \ldots, x_n)$. Since $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) \in T_p M$, there exists a uniquely determined collection of functions $\Gamma_{ij}^k \in C^{\infty}(U)$ s.t. $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) = \sum_{k=1}^n \Gamma_{ij}^k(p) \frac{\partial}{\partial x_k}(p)$. These functions are called Christoffel symbols of ∇ with respect to the chart φ . **Remark.** Christoffel symbols determine ∇ since

1

$$\nabla_{\sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}} \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j} = \sum_{i,j} a_i \frac{\partial b_j}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{i,j,k} a_i b_j \Gamma_{ij}^k \frac{\partial}{\partial x_k}.$$

Proposition 4.7.

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{m} g^{km} (g_{im,j} + g_{jm,i} - g_{ij,m}),$$

where $g_{ab,c} = \frac{\partial}{\partial x_c} g_{ab}$ and $(g^{ij}) = (g_{ij})^{-1}$, i.e. $\{g^{ij}\}$ are the elements of the matrix inverse to (g_{ij}) . In particular, $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Example 4.8. In \mathbb{R}^n , $\Gamma_{ij}^k \equiv 0$ for all i, j, k. Computation of Γ_{ij}^k in $S^2 \subset \mathbb{R}^3$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c : (a, b) \to M$ be a smooth curve. A smooth map $X : (a, b) \to TM$ with $X(t) \in T_{c(t)}M$ is called a vector field along c. These fields form a vector space $\mathfrak{X}_c(M)$.

Example 4.10. $c'(t) \in \mathfrak{X}_c(M)$.

Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, $c : (a, b) \rightarrow M$ be a smooth curve. There exists a unique map $\frac{D}{dt} : \mathfrak{X}_c(M) \rightarrow \mathfrak{X}_c(M)$ satisfying

(a)
$$\frac{D}{dt}(\alpha X + Y) = \alpha \frac{D}{dt}X + \frac{D}{dt}Y$$
 for any $\alpha \in \mathbb{R}$

- (b) $\frac{D}{dt}(fX) = f'(t)X + f\frac{D}{dt}X$ for every $f \in C^{\infty}(M)$.
- (c) If $\widetilde{X} \in \mathfrak{X}(M)$ is a local extension of X(i.e. there exists $t_0 \in (a,b)$ and $\varepsilon > 0$ such that $X(t) = \widetilde{X}|_{c(t)}$ for all $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$) then $(\frac{D}{dt}X)(t_0) = \nabla_{c'(t_0)}\widetilde{X}$.

This map $\frac{D}{dt}: \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ is called the <u>covariant derivative along the curve c</u>.

Example 4.12. Covariant derivative in \mathbb{R}^n .

Definition 4.13. Let $X \in \mathfrak{X}_c(M)$. If $\frac{D}{dt}X = 0$ then X is said to be parallel along c.

Example 4.14. A vector field X in \mathbb{R}^n is parallel along a curve if and only if X is constant.

Theorem 4.15. Let $c : [a,b] \to M$ be a smooth curve, $v \in T_{c(a)}M$. There exists a unique vector field $X \in \mathfrak{X}_c(M)$ parallel along c with X(a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of (M, g)).

Definition 4.17. Let $c : [a,b] \to M$ be a smooth curve. A linear map $P_c : T_{c(a)}M \to T_{c(b)}M$ defined by $P_c(v) = X(b)$, where $X \in \mathfrak{X}_c(M)$ is parallel along c with X(a) = v, is called a parallel transport along c.

Remark. The parallel transport P_c depends on the curve c (not only on its endpoints).

Proposition 4.18. The parallel transport $P_c : T_{c(a)}M \to T_{c(b)}M$ is a linear isometry between $T_{c(a)}M$ and $T_{c(b)}M$, i.e. $g_{c(a)}(v,w) = g_{c(b)}(P_cv, P_cw)$.