Riemannian Geometry IV, Term 1 (Sections 3-4)

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric $g_{p}(\cdot, \cdot)$ or $\langle\cdot, \cdot\rangle_{p}$ is a family of real inner products $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ depending smoothly on $p \in M$. A smooth manifold M with a Riemannian metric g is called a Riemannian manifold (M, g).

Examples 3.2-3.3. Euclidean metric on \mathbb{R}^{n}, induced metric on $M \subset \mathbb{R}^{n}$.
Definition 3.4. Let (M, g) be a Riemannian manifold. For $v \in T_{p} M$ define the length of v by $0 \leq\|v\|_{g}=$ $\sqrt{g_{p}(v, v)}$.

Example 3.5. Three models of hyperbolic geometry:

model	notation	M	g				
Hyperboloid	\mathbb{W}^{n}	$\left\{y \in \mathbb{R}^{n+1} \mid q(y, y)=-1, y_{n+1}>0\right\}$ where $q(x, y)=\sum_{i=1}^{n} x_{i} y_{i}-x_{n+1} y_{n+1}$	$g_{x}(v, w)=q(v, w)$				
Poincaré ball	\mathbb{B}^{n}	$\left\{x \in \mathbb{R}^{n} \mid\\|x\\|^{2}=\sum_{i=1}^{n} x_{i}^{2}<1\right\}$	$g_{x}(v, w)=\frac{4}{\left(1-\\|x\\|^{2}\right)^{2}}\langle v, w\rangle$				
Upper half-space	\mathbb{H}^{n}	$\left\{x \in \mathbb{R}^{n} \mid x_{n}>0\right\}$	$g_{x}(v, w)=\frac{1}{x_{n}^{2}}\langle v, w\rangle$				

Definition 3.6. Given two vector spaces V_{1}, V_{2} with real inner products ($V_{i},\langle\cdot, \cdot\rangle_{i}$), an isomorphism $T: V_{1} \rightarrow V_{2}$ of vector spaces is a linear isometry if $\langle T v, T w\rangle_{2}=\langle v, w\rangle_{1}$ for all $v, w \in V_{1}$.

This is equivalent to preserving the lengths of all vectors (since $\langle v, w\rangle=\frac{1}{2}(\langle v+w, v+w\rangle-\langle v, v\rangle-$ $\langle w, w\rangle)$).

Definition 3.7. A diffeomorphism $f:(M, g) \rightarrow(N, h)$ of two Riemannian manifolds is an isometry if $D f(p): T_{p} M \rightarrow T_{f(p)} N$ is a linear isometry for all $p \in M$.

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold $\left(M^{m}, g\right)$ the exists an isometric embedding into \mathbb{R}^{k} for some $k \in \mathbb{N}$. If M is compact, there exists such $k \leq \frac{m(3 m+1)}{2}$, and if M is not compact, there is such $k \leq \frac{m(m+1)(3 m+1)}{2}$.

Definition 3.9. (M, g) is a Riemannian manifold, $c:[a, b] \rightarrow M$ is a smooth curve. The length $L(c)$ of c is defined by $L(c)=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t$, where $\left\|c^{\prime}(t)\right\|=\left\langle c^{\prime}(t), c^{\prime}(t)\right\rangle_{c(t)}^{1 / 2}$. The length of a piecewise-smooth curve is defined as the sum of lengths of its smooth pieces.

Theorem 3.10 (Reparametrization). Let $\varphi:[c, d] \rightarrow[a, b]$ be a strictly monotonic smooth function, $\varphi^{\prime} \neq 0$, and let $\gamma:[a, b] \rightarrow M$ be a smooth curve. Then for $\tilde{\gamma}=\gamma \circ \varphi:[c, d] \rightarrow M$ holds $L(\gamma)=L(\tilde{\gamma})$.

Definition 3.11. A smooth curve $c:[a, b] \rightarrow M$ is arc-length parametrized if $\left\|c^{\prime}(t)\right\| \equiv 1$.
Proposition 3.12 (evident). If a curve $c:[a, b] \rightarrow M$ is arc-length parametrized, then $L(c)=b-a$.
Proposition 3.13. Every curve has an arc-length parametrization.

Example 3.14. Length of vertical segments in \mathbb{H}. Shortest paths between points on vertical rays.
Definition 3.15. Define a distance $d: M \times M \rightarrow[0, \infty)$ on (M, g) by $d(p, q)=\inf _{\gamma}\{L(\gamma)\}$, where γ is a piecewise smooth curve connecting p and q.

Remark. (M, d) is a metric space.
Example 3.16. Induced metric on $S^{1} \subset \mathbb{R}^{2}$.
Definition 3.17. If (M, g) is a Riemannian manifold, then any subset $A \subset M$ is also a metric space with the induced metric $\left.d\right|_{A \times A}: A \times A \rightarrow[0, \infty)$ defined by $d(p, q)=\inf _{\gamma}\{L(\gamma) \mid \gamma:[a, b] \rightarrow A, \gamma(a)=$ $p, \gamma(b)=q\}$, where the length $L(\gamma)$ is computed in M.

Example 3.18. Punctured Riemann sphere: \mathbb{R}^{n} with metric $g_{x}(v, w)=\frac{4}{\left(1+\|x\|^{2}\right)^{2}}\langle v, w\rangle$.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field $X=\sum a_{i}(p) \frac{\partial}{\partial x_{i}} \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ and a vector $v \in T_{p} \mathbb{R}^{n}$ define the $\underline{\text { covariant derivative of } X \text { in direction } v}$ in \mathbb{R}^{n} by $\nabla_{v}(X)=\lim _{t \rightarrow 0} \frac{X(p+t v)-X(p)}{t}=\left.\sum v\left(a_{i}\right) \frac{\partial}{\partial x_{i}}\right|_{p} \in T_{p} \mathbb{R}^{n}$.

Proposition 4.2. The covariant derivative $\nabla_{v} X$ in \mathbb{R}^{n} satisfies all the properties (a)-(e) listed below in Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M),(X, Y) \mapsto \nabla_{X} Y$ is affine connection if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds
(a) $\nabla_{X}(Y+Z)=\nabla_{X}(Y)+\nabla_{X}(Z)$
(b) $\nabla_{X}(f Y)=X(f) Y(p)+f(p) \nabla_{X} Y$
(c) $\nabla_{f X+g Y} Z=f \nabla_{X} Z+g \nabla_{Y} Z$

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique affine connection ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:

$$
\begin{array}{ll}
\text { (d) } v(\langle X, Y\rangle)=\left\langle\nabla_{v} X, Y\right\rangle+\left\langle X, \nabla_{v} Y\right\rangle & \text { (Riemannian property); } \\
\text { (e) } \nabla_{X} Y-\nabla_{Y} X=[X, Y] & \text { (} \nabla \text { is torsion-free). }
\end{array}
$$

This connection is called Levi-Civita connection of (M, g).
Remark 4.5. Properties of Levi-Civita connection in \mathbb{R}^{n} and in $M \subset \mathbb{R}^{n}$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let $\varphi: U \rightarrow V$ be a coordinate chart with coordinates $\varphi=\left(x_{1}, \ldots, x_{n}\right)$. Since $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}(p) \in T_{p} M$, there exists a uniquely determined collection of functions $\Gamma_{i j}^{k} \in C^{\infty}(U)$ s.t. $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}(p)=\sum_{k=1}^{n} \Gamma_{i j}^{k}(p) \frac{\partial}{\partial x_{k}}(p)$. These functions are called Christoffel symbols of ∇ with respect to the chart φ.

Remark. Christoffel symbols determine ∇ since $\quad \nabla_{\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}} \sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}=\sum_{i, j} a_{i} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}+\sum_{i, j, k} a_{i} b_{j} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}$.

Proposition 4.7.

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m} g^{k m}\left(g_{i m, j}+g_{j m, i}-g_{i j, m}\right)
$$

where $g_{a b, c}=\frac{\partial}{\partial x_{c}} g_{a b}$ and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$, i.e. $\left\{g^{i j}\right\}$ are the elements of the matrix inverse to $\left(g_{i j}\right)$.
In particular, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
Example 4.8. In $\mathbb{R}^{n}, \Gamma_{i j}^{k} \equiv 0$ for all i, j, k. Computation of $\Gamma_{i j}^{k}$ in $S^{2} \subset \mathbb{R}^{3}$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c:(a, b) \rightarrow M$ be a smooth curve. A smooth map $X:(a, b) \rightarrow T M$ with $X(t) \in$ $T_{c(t)} M$ is called a vector field along c. These fields form a vector space $\mathfrak{X}_{c}(M)$.
Example 4.10. $c^{\prime}(t) \in \mathfrak{X}_{c}(M)$.
Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, $c:(a, b) \rightarrow$ M be a smooth curve. There exists a unique map $\frac{D}{d t}: \mathfrak{X}_{c}(M) \rightarrow \mathfrak{X}_{c}(M)$ satisfying
(a) $\frac{D}{d t}(\alpha X+Y)=\alpha \frac{D}{d t} X+\frac{D}{d t} Y$ for any $\alpha \in \mathbb{R}$.
(b) $\frac{D}{d t}(f X)=f^{\prime}(t) X+f \frac{D}{d t} X$ for every $f \in C^{\infty}(M)$.
(c) If $\tilde{X} \in \mathfrak{X}(M)$ is a local extension of X
(i.e. there exists $t_{0} \in(a, b)$ and $\varepsilon>0$ such that $X(t)=\left.\widetilde{X}\right|_{c(t)}$ for all $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$) then $\left(\frac{D}{d t} X\right)\left(t_{0}\right)=\nabla_{c^{\prime}\left(t_{0}\right)} \widetilde{X}$.
This map $\frac{D}{d t}: \mathfrak{X}_{c}(M) \rightarrow \mathfrak{X}_{c}(M)$ is called the covariant derivative along the curve c.
Example 4.12. Covariant derivative in \mathbb{R}^{n}.
Definition 4.13. Let $X \in \mathfrak{X}_{c}(M)$. If $\frac{D}{d t} X=0$ then X is said to be parallel along c.
Example 4.14. A vector field X in \mathbb{R}^{n} is parallel along a curve if and only if X is constant.
Theorem 4.15. Let $c:[a, b] \rightarrow M$ be a smooth curve, $v \in T_{c(a)} M$. There exists a unique vector field $X \in \mathfrak{X}_{c}(M)$ parallel along c with $X(a)=v$.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of (M, g)).

Definition 4.17. Let $c:[a, b] \rightarrow M$ be a smooth curve. A linear map $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ defined by $P_{c}(v)=X(b)$, where $X \in \mathfrak{X}_{c}(M)$ is parallel along c with $X(a)=v$, is called a parallel transport along c.

Remark. The parallel transport P_{c} depends on the curve c (not only on its endpoints).
Proposition 4.18. The parallel transport $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ is a linear isometry between $T_{c(a)} M$ and $T_{c(b)} M$, i.e. $g_{c(a)}(v, w)=g_{c(b)}\left(P_{c} v, P_{c} w\right)$.

