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Riemannian Geometry IV, Term 1 (Sections 3—4)

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric g,(-,-) or (-,-), is a family of real
inner products g, : T,M x T,M — R depending smoothly on p € M. A smooth manifold M with a
Riemannian metric g is called a Riemannian manifold (M, g).

Examples 3.2—-3.3. Euclidean metric on R", induced metric on M C R"™.

Definition 3.4. Let (M, g) be a Riemannian manifold. For v € T,M define the length of v by 0 < |jv||, =
V9p(v, ).

Example 3.5. Three models of hyperbolic geometry:

model notation M g
. eR"™ | q(y,y) = —Lyn+1 > 0}
Hyperboloid wn {y ’ It v,w) = q(v,w
P where Q(m7 y) - Z;’L:l TilYi — Tn+1Yn+1 gﬂ?( ) q( )
n
Poincaré ball B" {x eR"||z]? =Y 22 < 1} 9z (v,w) = W(v,u&
i=1
Upper half-space H" {r e R" |z, >0} gz (v, w) = ﬁ(v,w)

Definition 3.6. Given two vector spaces Vi, Vs with real inner products (V;, (-, -);), an isomorphism
T : Vi — V, of vector spaces is a linear isometry if (T'v, Tw)s = (v, w); for all v,w € V;.

This is equivalent to preserving the lengths of all vectors (since (v, w) = 2((v 4+ w,v + w) — (v,v) —

(w, w))).

Definition 3.7. A diffeomorphism f : (M,g) — (N, h) of two Riemannian manifolds is an isometry if
Df(p) : TyM — Ty N is a linear isometry for all p € M.

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold (M™, g) the ezists an isometric

embedding into R* for some k € N. If M is compact, there exists such k < M, and if M is not

compact, there is such k < w

Definition 3.9. (M, g) is a Riemannian manifold, ¢ : [a,b] — M is a smooth curve. The length L(c) of ¢
is defined by L(c) = f; I/ (¥)||dt, where ||/ (t)|| = (¢ (), c’(t)}i(/f). The length of a piecewise-smooth curve

is defined as the sum of lengths of its smooth pieces.

Theorem 3.10 (Reparametrization). Let ¢ : [c,d] — [a,b] be a strictly monotonic smooth function,
¢ #0, and let 7 : [a,b] = M be a smooth curve. Then for ¥ =~y o p: [c,d] — M holds L(v) = L(7).

Definition 3.11. A smooth curve c¢: [a,b] — M is arc-length parametrized if ||¢/(¢)|| = 1.

Proposition 3.12 (evident). If a curve c: [a,b] — M ‘s arc-length parametrized, then L(c) =b— a.

Proposition 3.13. Every curve has an arc-length parametrization.



Example 3.14. Length of vertical segments in H. Shortest paths between points on vertical rays.

Definition 3.15. Define a distance d : M x M — [0,00) on (M, g) by d(p,q) = inf,{L(7)}, where 7 is a
piecewise smooth curve connecting p and gq.

Remark. (M,d) is a metric space.
Example 3.16. Induced metric on S' C R2.

Definition 3.17. If (M, g) is a Riemannian manifold, then any subset A C M is also a metric space
with the induced metric d|axa : A x A — [0,00) defined by d(p,q) = inf,{L(v) | v : [a,b] = A,v(a) =
p,v(b) = q}, where the length L() is computed in M.

Example 3.18. Punctured Riemann sphere: R™ with metric g, (v, w) = W(v,w).

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field X = Zai(p)a%i € X(R") and a vector v € T,R"™ define the

covariant derivative of X in direction v in R" by V,(X) = 21i1r% w =) v(ai)%’p € T,R™
— 7

Proposition 4.2. The covariant derivative V, X in R™ satisfies all the properties (a)—(e) listed below in
Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map V : X(M) x X(M) — X(M), (X,Y) — VxY is
affine connection if for all X,Y,Z € X(M) and f,g € C*°(M) holds

(a) Vx(Y+2)=Vx(Y)+ Vx(2)
(b) Vx(fY) =X(f)Y(p) + f(p)VxY
(C) fo+gyZ = fVxZ +gVyZ

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique affine connection V on M with the additional properties for all
XY, Z e X(M):

(d) v((X,Y)) = (V,X,Y) + (X, V,Y) (Riemannian property);
(e) VxY —VyX = [X,Y] (V is torsion-free).

This connection is called Levi-Ciwvita connection of (M, g).

Remark 4.5. Properties of Levi-Civita connection in R” and in M C R™ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let V be the Levi-Civita connection on (M, g), and let ¢ : U — V be a coordinate
chart with coordinates ¢ = (x1,...,z,). Since V o a%j(p) € T,M, there exists a uniquely determined
oz,

collection of functions Ffj € C*°WU) s.t. V.o a%j(p) = > Ffj(p) 9_(p). These functions are called
oz,

Oz,

Christoffel symbols of V with respect to the chart ¢.




n
5 _x, 0 o G Tk D
0 Zba%j—zazazazfzkazbyrijaﬁ-
Z?]

Remark. Christoffel symbols determine V since AV
i;laiaxi 7=1 1,7,

Proposition 4.7.
1
Ffj ~ 9 ngm(gim,j + Gjm.i = Gijm),
m

where gap e = a%cgab and (g7) = (gi;) 7", i.e. {g"} are the elements of the matriz inverse to (gij).
In particular, Ffj = I‘fz

Example 4.8. In R", Ffj = 0 for all 4, j, k. Computation of Ffj in §? C R3 with induced metric.

4.3 Parallel transport

Definition 4.9. Let ¢ : (a,b) — M be a smooth curve. A smooth map X : (a,b) — TM with X (t) €
T, )M is called a vector field along c. These fields form a vector space X.(M).

Example 4.10. ¢ (t) € X.(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, let V be the Levi-Civita connection, ¢ : (a,b) —
M be a smooth curve. There exists a unique map % c Xe(M) — Xo(M) satisfying

(a) 2(aX +Y)=al X+ ZY for any a € R.
(b) %(fX) =f'(t)X —|—ng for every f € C*(M).

(¢) If X € X(M) is a local extension of X N
(i.e. there exists tg € (a,b) and € > 0 such that X (t) = X‘C(t) forallt € (to —e,to+¢))

then (%X)(to) = Vc’(to);(-

This map % t X (M) — X(M) is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in R".
Definition 4.13. Let X € X.(M). If 2X = 0 then X is said to be parallel along c.
Example 4.14. A vector field X in R™ is parallel along a curve if and only if X is constant.

Theorem 4.15. Let ¢ : [a,b] — M be a smooth curve, v € Ty )M . There exists a unique vector field
X € X.(M) parallel along ¢ with X (a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of

Definition 4.17. Let c: [a,b] — M be a smooth curve. A linear map P, : Ty(q)M — T, M defined by
P.(v) = X(b), where X € X.(M) is parallel along ¢ with X (a) = v, is called a parallel transport along c.

Remark. The parallel transport P, depends on the curve ¢ (not only on its endpoints).

Proposition 4.18. The parallel transport Pe : To(q)M — To)M is a linear isometry between T,)M and
Tc(b)M’ i.e. 9e(a) (U’ w) = Ge(b) (PCU, PC’LU)



