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Riemannian Geometry IV, Term 1 (Sections 3–4)

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric gp(·, ·) or 〈·, ·〉p is a family of real
inner products gp : TpM × TpM → R depending smoothly on p ∈ M . A smooth manifold M with a
Riemannian metric g is called a Riemannian manifold (M, g).

Examples 3.2–3.3. Euclidean metric on Rn, induced metric on M ⊂ Rn.

Definition 3.4. Let (M, g) be a Riemannian manifold. For v ∈ TpM define the length of v by 0 ≤ ‖v‖g =√
gp(v, v).

Example 3.5. Three models of hyperbolic geometry:

model notation M g

Hyperboloid Wn {y ∈ Rn+1 | q(y, y) = −1, yn+1 > 0}
where q(x, y) =

∑n
i=1 xiyi − xn+1yn+1

gx(v, w) = q(v, w)

Poincaré ball Bn {x ∈ Rn | ‖x‖2 =
n∑
i=1

x2i < 1} gx(v, w) = 4
(1−‖x‖2)2 〈v, w〉

Upper half-space Hn {x ∈ Rn | xn > 0} gx(v, w) = 1
x2n
〈v, w〉

Definition 3.6. Given two vector spaces V1, V2 with real inner products (Vi, 〈·, ·〉i), an isomorphism
T : V1 → V2 of vector spaces is a linear isometry if 〈Tv, Tw〉2 = 〈v, w〉1 for all v, w ∈ V1.

This is equivalent to preserving the lengths of all vectors (since 〈v, w〉 = 1
2(〈v + w, v + w〉 − 〈v, v〉 −

〈w,w〉)).

Definition 3.7. A diffeomorphism f : (M, g) → (N,h) of two Riemannian manifolds is an isometry if
Df(p) : TpM → Tf(p)N is a linear isometry for all p ∈M .

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold (Mm, g) the exists an isometric

embedding into Rk for some k ∈ N. If M is compact, there exists such k ≤ m(3m+1)
2 , and if M is not

compact, there is such k ≤ m(m+1)(3m+1)
2 .

Definition 3.9. (M, g) is a Riemannian manifold, c : [a, b]→M is a smooth curve. The length L(c) of c

is defined by L(c) =
∫ b
a ‖c

′(t)‖dt, where ‖c′(t)‖ = 〈c′(t), c′(t)〉1/2c(t). The length of a piecewise-smooth curve
is defined as the sum of lengths of its smooth pieces.

Theorem 3.10 (Reparametrization). Let ϕ : [c, d] → [a, b] be a strictly monotonic smooth function,
ϕ′ 6= 0, and let γ : [a, b]→M be a smooth curve. Then for γ̃ = γ ◦ ϕ : [c, d]→M holds L(γ) = L(γ̃).

Definition 3.11. A smooth curve c : [a, b]→M is arc-length parametrized if ‖c′(t)‖ ≡ 1.

Proposition 3.12 (evident). If a curve c : [a, b]→M is arc-length parametrized, then L(c) = b− a.

Proposition 3.13. Every curve has an arc-length parametrization.
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Example 3.14. Length of vertical segments in H. Shortest paths between points on vertical rays.

Definition 3.15. Define a distance d : M ×M → [0,∞) on (M, g) by d(p, q) = infγ{L(γ)}, where γ is a
piecewise smooth curve connecting p and q.

Remark. (M,d) is a metric space.

Example 3.16. Induced metric on S1 ⊂ R2.

Definition 3.17. If (M, g) is a Riemannian manifold, then any subset A ⊂ M is also a metric space
with the induced metric d|A×A : A × A → [0,∞) defined by d(p, q) = infγ{L(γ) | γ : [a, b] → A, γ(a) =
p, γ(b) = q}, where the length L(γ) is computed in M .

Example 3.18. Punctured Riemann sphere: Rn with metric gx(v, w) = 4
(1+‖x‖2)2 〈v, w〉.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field X =
∑
ai(p)

∂
∂xi
∈ X(Rn) and a vector v ∈ TpRn define the

covariant derivative of X in direction v in Rn by ∇v(X) = lim
t→0

X(p+tv)−X(p)
t =

∑
v(ai)

∂
∂xi

∣∣
p
∈ TpRn.

Proposition 4.2. The covariant derivative ∇vX in Rn satisfies all the properties (a)–(e) listed below in
Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map ∇ : X(M) × X(M) → X(M), (X,Y ) 7→ ∇XY is
affine connection if for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M) holds

(a) ∇X(Y + Z) = ∇X(Y ) +∇X(Z)

(b) ∇X(fY ) = X(f)Y (p) + f(p)∇XY

(c) ∇fX+gY Z = f∇XZ + g∇Y Z

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique affine connection ∇ on M with the additional properties for all
X,Y, Z ∈ X(M):

(d) v(〈X,Y 〉) = 〈∇vX,Y 〉+ 〈X,∇vY 〉 (Riemannian property);

(e) ∇XY −∇YX = [X,Y ] (∇ is torsion-free).

This connection is called Levi-Civita connection of (M, g).

Remark 4.5. Properties of Levi-Civita connection in Rn and in M ⊂ Rn with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let ϕ : U → V be a coordinate
chart with coordinates ϕ = (x1, . . . , xn). Since ∇ ∂

∂xi

∂
∂xj

(p) ∈ TpM , there exists a uniquely determined

collection of functions Γkij ∈ C∞(U) s.t. ∇ ∂
∂xi

∂
∂xj

(p) =
∑n

k=1 Γkij(p)
∂
∂xk

(p). These functions are called

Christoffel symbols of ∇ with respect to the chart ϕ.
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Remark. Christoffel symbols determine ∇ since ∇ n∑
i=1

ai
∂

∂xi

n∑
j=1

bj
∂
∂xj

=
∑
i,j
ai
∂bj
∂xi

∂
∂xj

+
∑
i,j,k

aibjΓ
k
ij

∂
∂xk

.

Proposition 4.7.

Γkij =
1

2

∑
m

gkm(gim,j + gjm,i − gij,m),

where gab,c = ∂
∂xc

gab and (gij) = (gij)
−1, i.e. {gij} are the elements of the matrix inverse to (gij).

In particular, Γkij = Γkji.

Example 4.8. In Rn, Γkij ≡ 0 for all i, j, k. Computation of Γkij in S2 ⊂ R3 with induced metric.

4.3 Parallel transport

Definition 4.9. Let c : (a, b) → M be a smooth curve. A smooth map X : (a, b) → TM with X(t) ∈
Tc(t)M is called a vector field along c. These fields form a vector space Xc(M).

Example 4.10. c′(t) ∈ Xc(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, c : (a, b)→
M be a smooth curve. There exists a unique map D

dt : Xc(M)→ Xc(M) satisfying

(a) D
dt(αX + Y ) = αDdtX + D

dtY for any α ∈ R.

(b) D
dt(fX) = f ′(t)X + f DdtX for every f ∈ C∞(M).

(c) If X̃ ∈ X(M) is a local extension of X
(i.e. there exists t0 ∈ (a, b) and ε > 0 such that X(t) = X̃

∣∣
c(t)

for all t ∈ (t0 − ε, t0 + ε))

then (DdtX)(t0) = ∇c′(t0)X̃.

This map D
dt : Xc(M)→ Xc(M) is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in Rn.

Definition 4.13. Let X ∈ Xc(M). If D
dtX = 0 then X is said to be parallel along c.

Example 4.14. A vector field X in Rn is parallel along a curve if and only if X is constant.

Theorem 4.15. Let c : [a, b] → M be a smooth curve, v ∈ Tc(a)M . There exists a unique vector field
X ∈ Xc(M) parallel along c with X(a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of
(M, g)).

Definition 4.17. Let c : [a, b] → M be a smooth curve. A linear map Pc : Tc(a)M → Tc(b)M defined by
Pc(v) = X(b), where X ∈ Xc(M) is parallel along c with X(a) = v, is called a parallel transport along c.

Remark. The parallel transport Pc depends on the curve c (not only on its endpoints).

Proposition 4.18. The parallel transport Pc : Tc(a)M → Tc(b)M is a linear isometry between Tc(a)M and
Tc(b)M , i.e. gc(a)(v, w) = gc(b)(Pcv, Pcw).
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