Riemannian Geometry IV, Term 1 (Section 5)

5 Geodesics

5.1 Geodesics as solutions of ODE's

Definition 5.1. Given (M, g), a curve $c:[a, b] \rightarrow M$ is a geodesic if $\frac{D}{d t} c^{\prime}(t)=0$ for all $t \in[a, b]$ (i.e., $c^{\prime}(t) \in \mathfrak{X}_{c}(M)$ is parallel along $\left.c\right)$.

Lemma 5.2. If c is a geodesic then c is parametrized proportionally to the arc length.
Theorem 5.3. Given a Riemannian manifold $(M, g), p \in M, v \in T_{p} M$, there exists $\varepsilon>0$ and a unique geodesic $c:(-\varepsilon, \varepsilon) \rightarrow M$ such that $c(0)=p, c^{\prime}(0)=v$.

Examples 5.4-5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model \mathbb{H}^{2}.

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let $c:[a, b] \rightarrow M$ be a smooth curve. A smooth map $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ is a (smooth) variation of c if $F(0, t)=c(t)$. Variation is proper if $F(s, a)=c(a)$ and $F(s, b)=c(b)$ for all $s \in(-\varepsilon, \varepsilon)$.

Variation can be considered as a family of the curves $F_{s}(t)=F(s, t)$.
Definition 5.7. A variational vector field $X \in \mathfrak{X}_{c}(M)$ of a variation F is defined by $X(t)=\frac{\partial F}{\partial s}(0, t)$.
Definition 5.8. The length $l:(-\varepsilon, \varepsilon) \rightarrow[0, \infty)$ and energy $E:(-\varepsilon, \varepsilon) \rightarrow[0, \infty)$ of a variation F are defined by

$$
l(s)=\int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\| \mathrm{d} t, \quad E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} \mathrm{~d} t
$$

Remark. $l(s)$ is the length of the curve $F_{s}(t)$.
Theorem 5.9. A smooth curve c is a geodesic if and only if c is parametrized proportionally to the arc length and $l^{\prime}(0)=0$ for every proper variation of c.

Corollary 5.10. Let $c:[a, b] \rightarrow M$ be the shortest curve from $c(a)$ to $c(b)$, and c is parametrized proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).
Lemma 5.11 (Symmetry Lemma). Let $W \subset \mathbb{R}^{2}$ be an open set and $F: W \rightarrow M,(s, t) \mapsto F(s, t)$, be a smooth map. Let $\frac{D}{d t}$ be the covariant derivative along $F_{s}(t)$ and $\frac{D}{d s}$ be the covariant derivative along $F_{t}(s)$. Then $\frac{D}{d t} \frac{\partial F}{\partial s}=\frac{D}{d s} \frac{\partial F}{\partial t}$.

Theorem 5.12 (First variation formula of length). Let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a variation of a smooth curve $c(t), c^{\prime}(t) \neq 0$. Let $X(t)$ be its variational vector field and $l:(-\varepsilon, \varepsilon) \rightarrow[0, \infty)$ its length. Then

$$
l^{\prime}(0)=\int_{a}^{b} \frac{1}{\left\|c^{\prime}(t)\right\|} \frac{d}{d t}\left\langle X(t), c^{\prime}(t)\right\rangle \mathrm{d} t-\int_{a}^{b} \frac{1}{\left\|c^{\prime}(t)\right\|}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle \mathrm{d} t
$$

Corollary 5.13. (a) If $c(t)$ is parametrized proportionally to the arc length, $\left\|c^{\prime}(t)\right\| \equiv c$, then

$$
l^{\prime}(0)=\frac{1}{c}\left\langle X(b), c^{\prime}(b)\right\rangle-\frac{1}{c}\left\langle X(a), c^{\prime}(a)\right\rangle-\frac{1}{c} \int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle \mathrm{d} t ;
$$

(b) if $c(t)$ is geodesic, then $l^{\prime}(0)=\frac{1}{c}\left\langle X(b), c^{\prime}(b)\right\rangle-\frac{1}{c}\left\langle X(a), c^{\prime}(a)\right\rangle$;
(c) if F is proper $\underline{\text { and }} c$ is parametrized proportionally to the arc length, then $l^{\prime}(0)=-\frac{1}{c} \int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle \mathrm{d} t$;
(d) if F is proper $\underline{\text { and }} c$ is geodesic, then $l^{\prime}(0)=0$.

Lemma 5.14. Any vector field X along $c(t)$ with $X(a)=X(b)=0$ is a variational vector field for some proper variation F.

5.3 Exponential map and Gauss Lemma

Let $p \in M, v \in T_{p} M$. Denote by $c_{v}(t)$ the unique maximal geodesic (i.e., the domain is maximal) with $c_{v}(0)=p, c_{v}^{\prime}(0)=v$.
Definition 5.15. If $c_{v}(1)$ exists, define $\exp _{p}: T_{p} M \rightarrow M$ by $\exp _{p}(v)=c_{v}(1)$, the exponential map at p.
Example 5.16. Exponential map on the sphere S^{2} : length of c_{v} from p to $c_{v}(1)$ equals $\|v\|$.
Notation. $B_{r}\left(0_{p}\right)=\left\{v \in T_{p} M \mid\|v\|<r\right\} \subset T_{p} M$ is a ball of radius r centered at 0_{p}.
Proposition 5.17. (without proof)
For any $p \in(M, g)$ there exists $r>0$ such that $\exp _{p}: B_{r}\left(0_{p}\right) \rightarrow \exp _{p}\left(B_{r}\left(0_{p}\right)\right)$ is a diffeomorphism.
Example. On S^{2} the set $\exp _{p}\left(B_{\pi / 2}\left(0_{p}\right)\right)$ is a hemisphere, so that every geodesic starting from p is orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M, g) be a Riemannian manifold, $p \in M$, and let $\varepsilon>0$ be such that $\exp _{p}: B_{\varepsilon}\left(0_{p}\right) \rightarrow \exp _{p}\left(B_{\varepsilon}\left(0_{p}\right)\right)$ is a diffeomorphism. Define $A_{\delta}=\left\{\exp _{p}(w) \mid\|w\|=\delta\right\}$ for every $0<\delta<\varepsilon$. Then every radial geodesic $c: t \mapsto \exp _{p}(t v), t \geq 0$, is orthogonal to A_{δ}.

Remark 5.19. The curve $c_{v}(t)=\exp _{p}(t v)$ is indeed geodesic; every geodesic γ through p can be written as $\gamma(t)=\exp _{p}(t w)$ for appropriate $w \in T_{p} M$.

Definition. Denote $B_{\varepsilon}(p)=\exp _{p}\left(B_{\varepsilon}\left(0_{p}\right)\right) \subset M$, a geodesic ball.
Lemma 5.20. Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon>0$ be small enough such that $\exp _{p}: B_{\varepsilon}\left(0_{p}\right) \rightarrow B_{\varepsilon}(p) \subset M$ is a diffeomorphism. Let $\gamma:[0,1] \rightarrow B_{\varepsilon}(p) \backslash\{p\}$ be any curve. Then there exists a curve $v:[0,1] \rightarrow T_{p} M,\|v(s)\|=1$ for all $s \in[0,1]$, and a positive function $r:[0,1] \rightarrow \mathbb{R}_{+}$, such that $\gamma(s)=\exp _{p}(r(s) v(s))$.

Lemma 5.21. Let $r:[0,1] \rightarrow \mathbb{R}_{+}, v:[0,1] \rightarrow S_{p} M=\left\{w \in T_{p} M \mid\|w\|=1\right\}$. Define $\gamma:[0,1] \rightarrow$ $B_{\varepsilon}(p) \backslash\{p\}$ by $\gamma(s)=\exp _{p}(r(s) v(s))$. Then the length $l(\gamma) \geq|r(1)-r(0)|$, and the equality holds if and only if γ is a reparametrization of a radial geodesic (i.e. $v(s) \equiv\|v(0)\|$ and $r(s)$ is a strictly increasing or decreasing function).

Corollary 5.22. Given a point $p \in M$, there exists $\varepsilon>0$ such that for any $q \in B_{\varepsilon}(p)$ there exists a curve $c(t)$ connecting p and q and satisfying $l(c)=d(p, q)$. (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is $\varepsilon>0$ such that $B_{\varepsilon}(p)$ coincides with ε-ball at p, i.e. with $\{q \in M \mid d(p, q)<\varepsilon\}$.

Proposition 5.23. (without proof)
Let $p \in M$. Then there is an open neighborhood U of p and $\varepsilon>0$ such that $\forall q \in U \exp _{q}: B_{\varepsilon}\left(0_{q}\right) \rightarrow B_{\varepsilon}(q)$ is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic $c:[a, b] \rightarrow M$ is minimal if $l(c)=d(c(a), c(b))$. A geodesic $c: \mathbb{R} \rightarrow M$ is minimal if its restriction $\left.c\right|_{[a, b]}$ is minimal for each segment $[a, b] \subset \mathbb{R}$.
Example. No minimal geodesics in S^{2}, all geodesics in \mathbb{E}^{2} are minimal.
Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic $c:[a, b] \rightarrow M$ can be extended to a geodesic $\tilde{c}: \mathbb{R} \rightarrow M$ (i.e. can be extended infinitely in both directions). Equivalently, $\exp _{p}$ is defined on the whole $T_{p} M$ for all $p \in M$.
Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function d. Then the following are equivalent:
(a) (M, g) is complete (i.e. every Cauchy sequence converges);
(b) every closed and bounded subset is compact;
(c) (M, g) is geodesically complete.

Moreover, every of the conditions above implies
(d) for every $p, q \in M$ there exists a minimal geodesic connecting p and q.

Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).
Remark. Theorem 5.26 uses the following notions defined in a metric space:

- $\left\{x_{i}\right\}, x_{i} \in M$, is a Cauchy sequence if $\forall \varepsilon>0 \exists N \forall m, n>N \quad d\left(x_{m}, x_{n}\right)<\varepsilon$;
- a set $A \subset M$ is bounded if $A \subset B_{r}(p)$ for some $r>0, p \in M$;
- a set $A \subset M$ is closed if $\left\{x_{n} \in A, x_{n} \rightarrow x\right\} \Rightarrow x \in A$;
- a set $A \subset M$ is compact if each open cover has a finite subcover;
- a set $A \subset M$ is sequentially compact if each sequence has a converging subsequence.

Some properties:

1. A compact set is sequentially compact, bounded, closed.
2. A compact metric space is complete.
3. In a complete metric space, a sequentially compact set is compact.
