Riemannian Geometry IV, Term 1 (Section 5)

5 Geodesics

5.1 Geodesics as solutions of ODE's

Definition 5.1. Given (M, g), a curve $c : [a, b] \to M$ is a <u>geodesic</u> if $\frac{D}{dt}c'(t) = 0$ for all $t \in [a, b]$ (i.e., $c'(t) \in \mathfrak{X}_c(M)$ is parallel along c).

Lemma 5.2. If c is a geodesic then c is parametrized proportionally to the arc length.

Theorem 5.3. Given a Riemannian manifold (M,g), $p \in M$, $v \in T_pM$, there <u>exists</u> $\varepsilon > 0$ and a <u>unique</u> geodesic $c : (-\varepsilon, \varepsilon) \to M$ such that c(0) = p, c'(0) = v.

Examples 5.4–5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model \mathbb{H}^2 .

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let $c:[a,b] \to M$ be a smooth curve. A smooth map $F:(-\varepsilon,\varepsilon) \times [a,b] \to M$ is a (smooth) variation of c if F(0,t) = c(t). Variation is proper if F(s,a) = c(a) and F(s,b) = c(b) for all $s \in (-\varepsilon,\varepsilon)$.

Variation can be considered as a family of the curves $F_s(t) = F(s,t)$.

Definition 5.7. A <u>variational vector field</u> $X \in \mathfrak{X}_c(M)$ of a variation F is defined by $X(t) = \frac{\partial F}{\partial s}(0,t)$.

Definition 5.8. The <u>length</u> $l:(-\varepsilon,\varepsilon)\to[0,\infty)$ and <u>energy</u> $E:(-\varepsilon,\varepsilon)\to[0,\infty)$ of a variation F are defined by

$$l(s) = \int_{a}^{b} \|\frac{\partial F}{\partial t}(s, t)\| dt, \qquad E(s) = \frac{1}{2} \int_{a}^{b} \|\frac{\partial F}{\partial t}(s, t)\|^{2} dt$$

Remark. l(s) is the length of the curve $F_s(t)$.

Theorem 5.9. A smooth curve c is a geodesic if and only if c is parametrized proportionally to the arc length and l'(0) = 0 for every proper variation of c.

Corollary 5.10. Let $c:[a,b] \to M$ be the shortest curve from c(a) to c(b), and c is parametrized proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).

Lemma 5.11 (Symmetry Lemma). Let $W \subset \mathbb{R}^2$ be an open set and $F: W \to M$, $(s,t) \mapsto F(s,t)$, be a smooth map. Let $\frac{D}{dt}$ be the covariant derivative along $F_s(t)$ and $\frac{D}{ds}$ be the covariant derivative along $F_t(s)$. Then $\frac{D}{dt} \frac{\partial F}{\partial s} = \frac{D}{ds} \frac{\partial F}{\partial t}$.

Theorem 5.12 (First variation formula of length). Let $F: (-\varepsilon, \varepsilon) \times [a, b] \to M$ be a variation of a smooth curve c(t), $c'(t) \neq 0$. Let X(t) be its variational vector field and $l: (-\varepsilon, \varepsilon) \to [0, \infty)$ its length. Then

$$l'(0) = \int_{a}^{b} \frac{1}{\|c'(t)\|} \frac{d}{dt} \langle X(t), c'(t) \rangle dt - \int_{a}^{b} \frac{1}{\|c'(t)\|} \langle X(t), \frac{D}{dt} c'(t) \rangle dt$$

Corollary 5.13. (a) If c(t) is parametrized proportionally to the arc length, $||c'(t)|| \equiv c$, then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle - \frac{1}{c} \langle X(a), c'(a) \rangle - \frac{1}{c} \int_{a}^{b} \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;

- (b) if c(t) is geodesic, then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle \frac{1}{c} \langle X(a), c'(a) \rangle$;
- (c) if F is proper <u>and</u> c is parametrized proportionally to the arc length, then $l'(0) = -\frac{1}{c} \int_{a}^{b} \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;
- (d) if F is proper and c is geodesic, then l'(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variational vector field for some proper variation F.

5.3 Exponential map and Gauss Lemma

Let $p \in M$, $v \in T_pM$. Denote by $c_v(t)$ the unique maximal geodesic (i.e., the domain is maximal) with $c_v(0) = p$, $c'_v(0) = v$.

Definition 5.15. If $c_v(1)$ exists, define $\exp_p: T_pM \to M$ by $\exp_p(v) = c_v(1)$, the exponential map at p.

Example 5.16. Exponential map on the sphere S^2 : length of c_v from p to $c_v(1)$ equals ||v||.

Notation. $B_r(0_p) = \{v \in T_pM \mid ||v|| < r\} \subset T_pM$ is a ball of radius r centered at 0_p .

Proposition 5.17. (without proof)

For any $p \in (M, g)$ there exists r > 0 such that $\exp_p : B_r(0_p) \to \exp_p(B_r(0_p))$ is a diffeomorphism.

Example. On S^2 the set $\exp_p(B_{\pi/2}(0_p))$ is a hemisphere, so that every geodesic starting from p is orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M,g) be a Riemannian manifold, $p \in M$, and let $\varepsilon > 0$ be such that $\exp_p : B_{\varepsilon}(0_p) \to \exp_p(B_{\varepsilon}(0_p))$ is a diffeomorphism. Define $A_{\delta} = \{\exp_p(w) \mid ||w|| = \delta\}$ for every $0 < \delta < \varepsilon$. Then every <u>radial</u> geodesic $c : t \mapsto \exp_p(tv)$, $t \ge 0$, is orthogonal to A_{δ} .

Remark 5.19. The curve $c_v(t) = \exp_p(tv)$ is indeed geodesic; every geodesic γ through p can be written as $\gamma(t) = \exp_p(tw)$ for appropriate $w \in T_pM$.

Definition. Denote $B_{\varepsilon}(p) = \exp_{p}(B_{\varepsilon}(0_{p})) \subset M$, a geodesic ball.

Lemma 5.20. Let (M,g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ be small enough such that $\exp_p : B_{\varepsilon}(0_p) \to B_{\varepsilon}(p) \subset M$ is a diffeomorphism. Let $\gamma : [0,1] \to B_{\varepsilon}(p) \setminus \{p\}$ be any curve. Then there exists a curve $v : [0,1] \to T_pM$, ||v(s)|| = 1 for all $s \in [0,1]$, and a positive function $r : [0,1] \to \mathbb{R}_+$, such that $\gamma(s) = \exp_p(r(s)v(s))$.

Lemma 5.21. Let $r:[0,1] \to \mathbb{R}_+$, $v:[0,1] \to S_pM = \{w \in T_pM \mid ||w|| = 1\}$. Define $\gamma:[0,1] \to B_{\varepsilon}(p) \setminus \{p\}$ by $\gamma(s) = \exp_p(r(s)v(s))$. Then the length $l(\gamma) \ge |r(1) - r(0)|$, and the equality holds if and only if γ is a reparametrization of a radial geodesic (i.e. $v(s) \equiv ||v(0)||$ and r(s) is a strictly increasing or decreasing function).

Corollary 5.22. Given a point $p \in M$, there exists $\varepsilon > 0$ such that for any $q \in B_{\varepsilon}(p)$ there exists a curve c(t) connecting p and q and satisfying l(c) = d(p, q). (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is $\varepsilon > 0$ such that $B_{\varepsilon}(p)$ coincides with ε -ball at p, i.e. with $\{q \in M \mid d(p,q) < \varepsilon\}$.

Proposition 5.23. (without proof)

Let $p \in M$. Then there is an open neighborhood U of p and $\varepsilon > 0$ such that $\forall q \in U \exp_q : B_{\varepsilon}(0_q) \to B_{\varepsilon}(q)$ is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic $c:[a,b]\to M$ is minimal if l(c)=d(c(a),c(b)). A geodesic $c:\mathbb{R}\to M$ is minimal if its restriction $c|_{[a,b]}$ is minimal for each segment $[a,b]\subset\mathbb{R}$.

Example. No minimal geodesics in S^2 , all geodesics in \mathbb{E}^2 are minimal.

Definition 5.25. A Riemannian manifold (M,g) is geodesically complete if every geodesic $c:[a,b]\to M$ can be extended to a geodesic $\tilde{c}:\mathbb{R}\to M$ (i.e. can be extended infinitely in both directions). Equivalently, \exp_p is defined on the whole T_pM for all $p\in M$.

Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function d. Then the following are equivalent:

- (a) (M,g) is complete (i.e. every Cauchy sequence converges);
- (b) every closed and bounded subset is compact;
- (c) (M,g) is geodesically complete.

Moreover, every of the conditions above implies

(d) for every $p, q \in M$ there exists a minimal geodesic connecting p and q.

Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).

Remark. Theorem 5.26 uses the following notions defined in a metric space:

- $\{x_i\}, x_i \in M$, is a Cauchy sequence if $\forall \varepsilon > 0 \,\exists N \,\forall m, n > N \, d(x_m, x_n) < \varepsilon$;
- a set $A \subset M$ is bounded if $A \subset B_r(p)$ for some $r > 0, p \in M$;
- a set $A \subset M$ is closed if $\{x_n \in A, x_n \to x\} \Rightarrow x \in A$;
- a set $A \subset M$ is compact if each open cover has a finite subcover;
- a set $A \subset M$ is sequentially compact if each sequence has a converging subsequence.

Some properties:

- 1. A compact set is sequentially compact, bounded, closed.
- 2. A compact metric space is complete.
- 3. In a complete metric space, a sequentially compact set is compact.