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Riemannian Geometry IV, Term 2 (Section 10, non-examinable)

10 Curvature and geometry

10.1 Index form

Definition 10.1. Recall (see the proof of Second Variational Formula) that given a geodesic c : [0, a]→M

there exists a symmetric bilinear form on Xc(M) given by Ia(V,W ) =
a∫
0

(〈V,W 〉+ 〈R(V, c′)c′,W 〉)dt.

The quadratic form Ia(V, V ) is called an index form.

Definition 10.2. The index of Ia is the maximal dimension of a subspace of Xc(M) on which Ia is
negative definite (i.e., negative inertia index).

Theorem 10.3 (Morse Index Theorem). The index of Ia is finite and equals the number of points c(t),
0 < t < a, conjugate to c(0) counted with multiplicities.

Corollary 10.4. The set of conjugate points along a geodesic is discrete.

Lemma 10.5 (Index Lemma). Let c : [0, a] → M be a geodesic containing no conjugate points to c(0).
Let J ∈ Jc be an orthogonal Jacobi field. Let V be a piecewise smooth vector field on c, 〈V, c′〉 = 0.
Suppose also J(0) = V (0) = 0, J(t0) = V (t0) for some t0 ∈ (0, a].

Then It0(J, J) ≤ It0(V, V ), where equality holds only if V = J on [0, a].

10.2 Rauch Comparison Theorem

Theorem 10.6 (Rauch Comparison Theorem). Let c : [0, a] → Mn and c̃ : [0, a] → M̃n+k be two unit

speed geodesics, and let J : [0, a]→ TM and J̃ : [0, a]→ TM̃ be two orthogonal Jacobi fields along c and c̃
with J(0) = J̃(0) = 0, ‖DdtJ(0)‖ = ‖Ddt J̃(0)‖. Assume that J̃ does not have conjugate points on (0, a), and

that for any t ∈ [0, a] the inequality KM (Π) ≤ K
M̃

(Π̃) holds for all 2-planes Π ⊂ Tc(t)M and Π̃ ⊂ Tc̃(t)M̃ .

Then ‖J(t)‖ ≥ ‖J̃(t)‖ for all t ∈ [0, a].

Corollary 10.7. Let M satisfy 0 < Kmin ≤ K ≤ Kmax, c : [0, a] → M is a geodesic. Then for any two
conjugate points along c the distance d between them satisfies

π√
Kmax

≤ d ≤ π√
Kmin

10.3 Injectivity radius

Definition 10.8. The injectivity radius of a point p ∈M is ip = sup{r ≥ 0 | expp is diffeo in Br(0p)} =
inf

q∈Cm(p)
d(p, q), where Cm(p) is the cut locus of p.

The injectivity radius of M is i(M) = inf
p
ip = inf

p∈M
d(p, Cm(p)).

Example 10.9. i(S2) = π; i(R2) = i(H2) =∞; i(T2) = 1/2; i(M) = 0 for any non-complete M .

Proposition 10.10. Let M be complete with sectional curvature K satisfying 0 < Kmin ≤ K ≤ Kmax.
Then at least one of the following holds.
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(a) i(M) ≥ π/
√
Kmax, or

(b) there exists a shortest closed geodesic c ∈M s.t. i(M) = 1
2 l(c).

Lemma 10.11 (Klingenberg, 1961). Let M be a compact simply-connected Riemannian manifold of
dimension n ≥ 3, and let 1/4 < K ≤ 1. Then i(M) ≥ π.

Remark. If n is even and M is orientable then it suffices for M to satisfy 0 < K ≤ 1.

10.4 Sphere Theorem

Theorem 10.12 (Berger, Klingenberg, 1961). Let M be a compact simply-connected Riemannian n-
dimensional manifold with 1

4 < K ≤ 1. Then M is homeomorphic to Sn.

Remark. (a) In fact, a stronger result is valid: M is diffeomorphic to Sn (Brendle, Schoen, 2009).

(b) The Sphere Theorem does not hold in assumptions 1
4 ≤ K(Π) ≤ 1.

(c) The theorem obviously holds in assumptions δ
4 < K(Π) ≤ δ for any δ > 0.

(d) In dimension n = 2 stronger result holds: if K ≥ 0 for all p ∈ M and K > 0 in at least one point,
then M is homeomorphic to S2.

The proof of the Sphere Theorem is based on the following two lemmas.

Lemma 10.13. Let M be a compact Riemannian manifold, let p, q ∈M be such that diam M = d(p, q).
Then for any w ∈ TM there exists a minimal geodesic c : [0, d(p, q)] → M , c(0) = p, c(d(p, q)) = q, such
that 〈w, c′(0)〉 ≥ 0.

Lemma 10.14. Let M be a compact simply-connected Riemannian manifold with sectional curvature
satisfying 1

4 < δ ≤ K ≤ 1, let p, q ∈M be such that diam M = d(p, q). Choose any ρ ∈ (π/2
√
δ, π). Then

M = Bρ(p) ∪Bρ(q).

10.5 Spaces of constant curvature

Theorem 10.15. Let M be a complete simply-connected Riemannian manifold of constant sectional
curvature K. Then

1) if K > 0 then M is isometric to Sn (assuming K = 1);
2) if K = 0 then M is isometric to En;
3) if K < 0 then M is isometric to Hn (assuming K = −1).

10.6 Comparison triangles

Definition 10.16. A triangle in a Riemannian manifold is a collection of 3 points with minimal geodesics
connecting them. A generalized triangle is a collection of 3 points with any geodesics connecting them
and satisfying triangle inequality.

Definition 10.17. A comparison triangle p′q′r′ for a generalized triangle pqr ∈M is a triangle in a space
of constant curvature with sides of the same lengths.

Theorem 10.18 (Alexandrov, Toponogov, 1959). Let K(Π) ≥ 0 for all Π ∈ TpM for all p ∈ M . Let
p0, p1, p2 ∈ M . Let p3 lie between p1 and p2 (i.e. d(p1, p3) + d(p2, p3) = d(p1, p2)). Let p′0, p

′
1, p

′
2 be a

comparison triangle in E2. Define p′3 by d(pi, p3)M = d(p′i, p
′
3)E2 for i = 1, 2. Then d(p0, p3)M ≥ d(p′0, p

′
3)E2

(Alexandrov – Toponogov inequality). Conversely, if Alexandrov – Toponogov inequality holds for all
p0, p1, p2, p3 then K ≥ 0.
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Remark. (a) Dual statement for K ≤ 0 with inverse AT-inequality.

(b) Equivalent conditions:

• smaller K implies smaller angles;

• smaller K implies bigger circumference of a circle of radius r;

• smaller K implies bigger volume of a ball or radius r.
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