Durham University Pavel Tumarkin

Riemannian Geometry IV, Term 2 (Section 10, non-examinable)

10 Curvature and geometry

10.1 Index form

Definition 10.1. Recall (see the proof of Second Variational Formula) that given a geodesic $c : [0, a] \to M$ there exists a symmetric bilinear form on $\mathfrak{X}_c(M)$ given by $I_a(V, W) = \int_0^a (\langle V, W \rangle + \langle R(V, c')c', W \rangle) dt$.

The quadratic form $I_a(V, V)$ is called an <u>index form</u>.

Definition 10.2. The <u>index</u> of I_a is the maximal dimension of a subspace of $\mathfrak{X}_c(M)$ on which I_a is negative definite (i.e., negative inertia index).

Theorem 10.3 (Morse Index Theorem). The index of I_a is finite and equals the number of points c(t), 0 < t < a, conjugate to c(0) counted with multiplicities.

Corollary 10.4. The set of conjugate points along a geodesic is discrete.

Lemma 10.5 (Index Lemma). Let $c : [0, a] \to M$ be a geodesic containing no conjugate points to c(0). Let $J \in J_c$ be an orthogonal Jacobi field. Let V be a piecewise smooth vector field on c, $\langle V, c' \rangle = 0$. Suppose also J(0) = V(0) = 0, $J(t_0) = V(t_0)$ for some $t_0 \in (0, a]$. Then $I_{t_0}(J, J) \leq I_{t_0}(V, V)$, where equality holds only if V = J on [0, a].

10.2 Rauch Comparison Theorem

Theorem 10.6 (Rauch Comparison Theorem). Let $c : [0, a] \to M^n$ and $\tilde{c} : [0, a] \to \widetilde{M}^{n+k}$ be two unit speed geodesics, and let $J : [0, a] \to TM$ and $\widetilde{J} : [0, a] \to T\widetilde{M}$ be two orthogonal Jacobi fields along c and \tilde{c} with $J(0) = \widetilde{J}(0) = 0$, $\|\frac{D}{dt}J(0)\| = \|\frac{D}{dt}\widetilde{J}(0)\|$. Assume that \widetilde{J} does not have conjugate points on (0, a), and that for any $t \in [0, a]$ the inequality $K_M(\Pi) \leq K_{\widetilde{M}}(\widetilde{\Pi})$ holds for all 2-planes $\Pi \subset T_{c(t)}M$ and $\widetilde{\Pi} \subset T_{\tilde{c}(t)}\widetilde{M}$. Then $\|J(t)\| \geq \|\widetilde{J}(t)\|$ for all $t \in [0, a]$.

Corollary 10.7. Let M satisfy $0 < K_{\min} \le K \le K_{\max}$, $c : [0, a] \to M$ is a geodesic. Then for any two conjugate points along c the distance d between them satisfies

$$\frac{\pi}{\sqrt{K_{\max}}} \le d \le \frac{\pi}{\sqrt{K_{\min}}}$$

10.3 Injectivity radius

Definition 10.8. The injectivity radius of a point $p \in M$ is $i_p = \sup\{r \ge 0 \mid \exp_p \text{ is diffeo in } B_r(0_p)\} = \inf_{q \in C_m(p)} d(p,q)$, where $C_m(p)$ is the cut locus of p.

The injectivity radius of M is $i(M) = \inf_p i_p = \inf_{p \in M} d(p, C_m(p)).$

Example 10.9. $i(S^2) = \pi$; $i(\mathbb{R}^2) = i(\mathbb{H}^2) = \infty$; $i(\mathbb{T}^2) = 1/2$; i(M) = 0 for any non-complete M.

Proposition 10.10. Let M be complete with sectional curvature K satisfying $0 < K_{\min} \leq K \leq K_{\max}$. Then at least one of the following holds.

- (a) $i(M) \ge \pi/\sqrt{K_{max}}$, or
- (b) there exists a shortest closed geodesic $c \in M$ s.t. $i(M) = \frac{1}{2}l(c)$.

Lemma 10.11 (Klingenberg, 1961). Let M be a compact simply-connected Riemannian manifold of dimension $n \ge 3$, and let $1/4 < K \le 1$. Then $i(M) \ge \pi$.

Remark. If n is even and M is orientable then it suffices for M to satisfy $0 < K \leq 1$.

10.4 Sphere Theorem

Theorem 10.12 (Berger, Klingenberg, 1961). Let M be a compact simply-connected Riemannian *n*-dimensional manifold with $\frac{1}{4} < K \leq 1$. Then M is <u>homeomorphic</u> to S^n .

Remark. (a) In fact, a stronger result is valid: M is diffeomorphic to S^n (Brendle, Schoen, 2009).

- (b) The Sphere Theorem does not hold in assumptions $\frac{1}{4} \leq K(\Pi) \leq 1$.
- (c) The theorem obviously holds in assumptions $\frac{\delta}{4} < K(\Pi) \leq \delta$ for any $\delta > 0$.
- (d) In dimension n = 2 stronger result holds: if $K \ge 0$ for all $p \in M$ and K > 0 in at least one point, then M is homeomorphic to S^2 .

The proof of the Sphere Theorem is based on the following two lemmas.

Lemma 10.13. Let M be a compact Riemannian manifold, let $p, q \in M$ be such that diam M = d(p,q). Then for any $w \in T_M$ there exists a minimal geodesic $c : [0, d(p,q)] \to M$, c(0) = p, c(d(p,q)) = q, such that $\langle w, c'(0) \rangle \ge 0$.

Lemma 10.14. Let M be a compact simply-connected Riemannian manifold with sectional curvature satisfying $\frac{1}{4} < \delta \leq K \leq 1$, let $p, q \in M$ be such that diam M = d(p,q). Choose any $\rho \in (\pi/2\sqrt{\delta},\pi)$. Then $M = B_{\rho}(p) \cup B_{\rho}(q)$.

10.5 Spaces of constant curvature

Theorem 10.15. Let M be a complete simply-connected Riemannian manifold of <u>constant</u> sectional curvature K. Then

- 1) if K > 0 then M is isometric to S^n (assuming K = 1);
- 2) if K = 0 then M is isometric to \mathbb{E}^n ;
- 3) if K < 0 then M is isometric to \mathbb{H}^n (assuming K = -1).

10.6 Comparison triangles

Definition 10.16. A <u>triangle</u> in a Riemannian manifold is a collection of 3 points with <u>minimal</u> geodesics connecting them. A <u>generalized triangle</u> is a collection of 3 points with <u>any</u> geodesics connecting them and satisfying triangle inequality.

Definition 10.17. A comparison triangle p'q'r' for a generalized triangle $pqr \in M$ is a triangle in a space of constant curvature with sides of the same lengths.

Theorem 10.18 (Alexandrov, Toponogov, 1959). Let $K(\Pi) \ge 0$ for all $\Pi \in T_pM$ for all $p \in M$. Let $p_0, p_1, p_2 \in M$. Let p_3 lie between p_1 and p_2 (i.e. $d(p_1, p_3) + d(p_2, p_3) = d(p_1, p_2)$). Let p'_0, p'_1, p'_2 be a comparison triangle in \mathbb{E}^2 . Define p'_3 by $d(p_i, p_3)_M = d(p'_i, p'_3)_{\mathbb{E}^2}$ for i = 1, 2. Then $d(p_0, p_3)_M \ge d(p'_0, p'_3)_{\mathbb{E}^2}$ (Alexandrov – Toponogov inequality). Conversely, if Alexandrov – Toponogov inequality holds for all p_0, p_1, p_2, p_3 then $K \ge 0$.

Remark. (a) Dual statement for $K \leq 0$ with inverse AT-inequality.

- (b) Equivalent conditions:
 - smaller K implies smaller angles;
 - smaller K implies bigger <u>circumference</u> of a circle of radius r;
 - smaller K implies bigger <u>volume</u> of a ball or radius r.