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Riemannian Geometry IV, Term 2 (Sections 7-8)

7 Curvature

7.1 Riemann curvature tensor

Definition 7.1. Let (M, g) be a Riemannian manifold, let X(M) be the space of vector fields on M, and let
V be the Levi-Civita connection. Define a map (Riemann curvature tensor) R : X(M) x X(M)x X(M) —
X(M) by R(X,Y)Z = VxVyZ - VyVxZ - Vixy 2.

Remark. R is linear in all variables, so, it is a tensor; moreover, R(fX,gY)hZ = fghR(X,Y)Z for any
fig,h € C(M).

Lemma 7.2. R has the following symmetries:
(o) R(X,Y)Z =—-R(Y,X)Z (c) (R(X,Y)Z,W)=—(R(X, Y)W, Z)
(b) RX,Y)Z+R(Y,Z) X +R(Z,X)Y =0 (d) (R(X,Y)Z,W)=—(R(Z,W)X,Y)
(first Bianchi Identity)

Definition 7.3. Define components of Riemann curvature tensor R;jx = <R(B‘Zi, %)%, %), and Réjk
o) o) o _ l o)
by R(55: 92;) aer = 21 Bijiaa;
Then Riju =, Réjkgml and Rﬁjk => Rijkmgml.
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Example 7.4. Computation of components R;;.s and R, ik for hyperbolic plane (in the upper half-plane

model).

7.2 Sectional curvature

Definition 7.5. Let (M, g) be a Riemannian manifold, p € M, vy,ve € T, M, and let II C T,,M be the
2-plane spanned by vy, va.
The sectional curvature of II at p is K(I1) = K (v, v2) {Rlv1.02)vg,01)

= P llvz (P = (vi,v2)?

Proposition 7.6. K(II) does not depend on the basis {vi,v2} of II.

Examples. Sectional curvature of a 2-sphere and hyperbolic plane.

7.3 Ricci and scalar curvature

Given v, w € T,M define a linear map R(-,v)w : T,M — T,M by u — R(u,v)w.

Definition 7.7. Ricci curvature tensor Ric(v, w) is the trace of the map R(-, v)w: Ric,(v,w) = tr(R(-,v)w).
In an orthonormal basis {u;}, Ricy(v,w) = > "_, (R(uj, v)w, uj).

Definition 7.8. Ricci curvature at p is Ricy(v) = Ricy(v,v) = >0 (R(uj, v)w, uj)
In an orthonormal basis {v = u1,...,u,} we have Ricy(v) = > 7 5 K(v,u;).

Lemma 7.9. Ric(v,u) is a symmetric bilinear form (i.e. Ric(v) is a quadratic form).



Example. If K(v,w) is constant (= K) and ||v|| = 1, then Ric(v) = (n — 1)K.

Definition 7.10. Scalar curvature s(p) = »; Ricp(u;,u;) in an orthonormal basis {u;} of T,,M.
Example. If K(v,w) is constant (= K) then s = n(n — 1)K.

Lemma 7.11. s(p) does not depend on the orthonormal basis {u;}.

8 Bonnet — Myers Theorem

Theorem 8.1 (Bonnet — Myers, 1935). Let (M,g) be a connected, complete Riemannian manifold of
dimension n.

Suppose that Ric(v) > "T—_Ql forallve SM ={w e TM | |w|| =1}. Thendiam M (= sup d(p,q)) < mr.
p,qEM
In particular, M is bounded, so, it is compact (as it is complete).

Theorem 8.2 (Second variation formula of length). Let ¢ : [a,b] — M be a geodesic parametrized by arc
length, let F' : (—¢,¢) X [a,b] — M be a proper variation of ¢, let X (t) = %—f(o, t) be the variational vector
field. Define X*+(t) = X(t) — (X(t),c(t))(t), the orthogonal component of X (t). Let I(s) be the length
of the variation.

b 1
Then I"(0) = [ (|[25=? — K(c, X1)| XL |?)dt.

Remark. In the case if X is collinear to ¢’ (i.e. X+ = 0) we define K(¢/, X+) = 0.

Corollary 8.3. If K(II) < 0 for every p € M and every 2-plane I1 C T,M then every geodesic is locally
minimal.

Example 8.4. For the n-dimensional sphere S)' of radius r the inequality in the Bonnet — Myers Theorem
becomes an equality. Hence, the bound is sharp.

Lemma 8.5. Let F'(s,t) be a variation of a geodesic c(t), and let Z(s,t) € Tp(syyM be smooth. Then
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Example 8.6. Let 7" = R™/Z"™ be an n-dimensional torus with arbitrary metric g (compatible with the
smooth structure). Then there exists p € T™ and v € T,T™ such that Ric,(v) < 0.



