Riemannian Geometry IV, Term 2 (Sections 7-8)

7 Curvature

7.1 Riemann curvature tensor

Definition 7.1. Let (M, g) be a Riemannian manifold, let $\mathfrak{X}(M)$ be the space of vector fields on M, and let ∇ be the Levi-Civita connection. Define a map (Riemann curvature tensor) $R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow$ $\mathfrak{X}(M)$ by $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$.

Remark. R is linear in all variables, so, it is a tensor; moreover, $R(f X, g Y) h Z=f g h R(X, Y) Z$ for any $f, g, h \in C^{\infty}(M)$.

Lemma 7.2. R has the following symmetries:
(a) $R(X, Y) Z=-R(Y, X) Z$
(c) $\langle R(X, Y) Z, W\rangle=-\langle R(X, Y) W, Z\rangle$
(b) $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$
(d) $\langle R(X, Y) Z, W\rangle=-\langle R(Z, W) X, Y\rangle$
(first Bianchi Identity)
Definition 7.3. Define components of Riemann curvature tensor $R_{i j k l}=\left\langle R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}\right.$, $\left.\frac{\partial}{\partial x_{l}}\right\rangle$, and $R_{i j k}^{l}$ by $R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\sum_{l} R_{i j k}^{l} \frac{\partial}{\partial x_{l}}$.

Then $R_{i j k l}=\sum_{m} R_{i j k}^{l} g_{m l} \quad$ and $\quad R_{i j k}^{l}=\sum_{m} R_{i j k m} g^{m l}$.
Example 7.4. Computation of components $R_{i j k s}$ and $R_{i j k}^{l}$ for hyperbolic plane (in the upper half-plane model).

7.2 Sectional curvature

Definition 7.5. Let (M, g) be a Riemannian manifold, $p \in M, v_{1}, v_{2} \in T_{p} M$, and let $\Pi \subset T_{p} M$ be the 2 -plane spanned by v_{1}, v_{2}.
The sectional curvature of Π at p is $K(\Pi)=K\left(v_{1}, v_{2}\right)=\frac{\left\langle R\left(v_{1}, v_{2}\right) v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}-\left\langle v_{1}, v_{2}\right\rangle^{2}}$.
Proposition 7.6. $K(\Pi)$ does not depend on the basis $\left\{v_{1}, v_{2}\right\}$ of Π.
Examples. Sectional curvature of a 2-sphere and hyperbolic plane.

7.3 Ricci and scalar curvature

Given $v, w \in T_{p} M$ define a linear map $R(\cdot, v) w: T_{p} M \rightarrow T_{p} M$ by $u \mapsto R(u, v) w$.
Definition 7.7. Ricci curvature tensor $\operatorname{Ric}(v, w)$ is the trace of the map $R(\cdot, v) w: \operatorname{Ric}_{p}(v, w)=\operatorname{tr}(R(\cdot, v) w)$.
In an orthonormal basis $\left\{u_{i}\right\}, \operatorname{Ric}_{p}(v, w)=\sum_{j=1}^{n}\left\langle R\left(u_{j}, v\right) w, u_{j}\right\rangle$.
Definition 7.8. Ricci curvature at p is $\operatorname{Ric}_{p}(v)=\operatorname{Ric}_{p}(v, v)=\sum_{j=1}^{n}\left\langle R\left(u_{j}, v\right) w, u_{j}\right\rangle$
In an orthonormal basis $\left\{v=u_{1}, \ldots, u_{n}\right\}$ we have $\operatorname{Ric}_{p}(v)=\sum_{j=2}^{n} K\left(v, u_{j}\right)$.
Lemma 7.9. $\operatorname{Ric}(v, u)$ is a symmetric bilinear form (i.e. Ric(v) is a quadratic form).

Example. If $K(v, w)$ is constant $(=K)$ and $\|v\|=1$, then $\operatorname{Ric}(v)=(n-1) K$.
Definition 7.10. Scalar curvature $s(p)=\sum_{j} \operatorname{Ric} c_{p}\left(u_{j}, u_{j}\right)$ in an orthonormal basis $\left\{u_{j}\right\}$ of $T_{p} M$.
Example. If $K(v, w)$ is constant $(=K)$ then $s=n(n-1) K$.
Lemma 7.11. $s(p)$ does not depend on the orthonormal basis $\left\{u_{j}\right\}$.

8 Bonnet - Myers Theorem

Theorem 8.1 (Bonnet - Myers, 1935). Let (M, g) be a connected, complete Riemannian manifold of dimension n.
Suppose that $\operatorname{Ric}(v) \geq \frac{n-1}{r^{2}}$ for all $v \in S M=\{w \in T M \mid\|w\|=1\}$. Then $\operatorname{diam} M\left(=\sup _{p, q \in M} d(p, q)\right) \leq \pi r$. In particular, M is bounded, so, it is compact (as it is complete).

Theorem 8.2 (Second variation formula of length). Let $c:[a, b] \rightarrow M$ be a geodesic parametrized by arc length, let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a proper variation of c, let $X(t)=\frac{\partial F}{\partial s}(0, t)$ be the variational vector field. Define $X^{\perp}(t)=X(t)-\left\langle X(t), c^{\prime}(t)\right\rangle c^{\prime}(t)$, the orthogonal component of $X(t)$. Let $l(s)$ be the length of the variation.

Then $l^{\prime \prime}(0)=\int_{a}^{b}\left(\left\|\frac{D X^{\perp}}{d t}\right\|^{2}-K\left(c^{\prime}, X^{\perp}\right)\left\|X^{\perp}\right\|^{2}\right) d t$.
Remark. In the case if X is collinear to c^{\prime} (i.e. $X^{\perp}=0$) we define $K\left(c^{\prime}, X^{\perp}\right)=0$.
Corollary 8.3. If $K(\Pi)<0$ for every $p \in M$ and every 2-plane $\Pi \subset T_{p} M$ then every geodesic is locally minimal.

Example 8.4. For the n-dimensional sphere S_{r}^{n} of radius r the inequality in the Bonnet - Myers Theorem becomes an equality. Hence, the bound is sharp.

Lemma 8.5. Let $F(s, t)$ be a variation of a geodesic $c(t)$, and let $Z(s, t) \in T_{F(s, t)} M$ be smooth. Then $\frac{D}{d s} \frac{D}{d t} Z-\frac{D}{d t} \frac{D}{d s} Z=R\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial t}\right) Z$.
Example 8.6. Let $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ be an n-dimensional torus with arbitrary metric g (compatible with the smooth structure). Then there exists $p \in T^{n}$ and $v \in T_{p} T^{n}$ such that $\operatorname{Ric}_{p}(v) \leq 0$.

