Riemannian Geometry IV, Term 2 (Section 9)

9 Jacobi fields

9.1 Jacobi fields and geodesic variations

Definition 9.1. Let c(t) be a geodesic. A vector field $J \in \mathfrak{X}_c(M)$ is a <u>Jacobi field</u> if it satisfies <u>Jacobi equation</u>: $\frac{D^2}{dt^2}J + R(J,c')c' = 0$.

Example 9.2. Vector fields c'(t) and tc'(t) are Jacobi fields for any geodesic c(t).

Theorem 9.3. Let c(t) be a geodesic. Let F(s,t) be a variation, s.t. every curve $F_s(t)$ is geodesic. Then the variational vector field $X(t) = \frac{\partial F}{\partial s}(0,t)$ is a Jacobi field.

Example 9.4. Geodesic variation on a sphere and its variational vector field.

Definition 9.5. Let $E_1(t), \ldots, E_n(t) \in \mathfrak{X}_c(M)$ be vector fields along c(t). We say that $\{E, \ldots, E_n\}$ is a parallel orthonormal basis along c if for all t, i, j holds $\frac{D}{dt}E_i = 0$ and $\langle E_i, E_j \rangle = \delta_{ij}$.

Notation. $R_{ij} = \langle R(E_i, c')c', e_j \rangle$, R_{ij} is an $n \times n$ symmetric matrix depending on t.

Theorem 9.6. Let c(t) be a geodesic and $\{E_i\}$ be a parallel orthonormal basis along c. Take $J \in \mathfrak{X}_c(M)$ and its expansion $J = \sum_j J_j(t)E_j(t)$ (where $J_j(t)$ are smooth functions). Then J is a Jacobi field if and only if $J_i'' + \sum_{j=1}^n R_{ij}J_j = 0$ for all $i = 1, \ldots, n$.

Corollary 9.7. For any choice of $v, w \in T_{c(t_0)}M$ there exists a unique Jacobi field J along c such that $J(t_0) = v$, $\frac{D}{dt}J(t_0) = w$.

Remark 9.8. Corollary 9.7 implies that for any geodesic c(t) the vector space $J_c(M)$ of Jacobi fields along c has dimension 2n. Moreover, the map $T_{c(t_0)}M \times T_{c(t_0)}M \to J_c(M)$ defined by $(v, w) \mapsto J$ s.t. $J(t_0) = v$, $\frac{D}{dt}J(t_0) = w$ is an isomorphism of vector spaces.

Lemma 9.9. Let $c:[0,1] \to M$ be a geodesic and $J \in J_c(M)$ be a Jacobi field along c. Suppose J(0) = 0. Then there exists a geodesic variation F of c such that $J = \frac{\partial F}{\partial s}(0,t)$.

9.2 Conjugate points and orthogonal Jacobi fields

Definition 9.10. Let $c:[a,b] \to M$ be a geodesic, $a \le t_0 < t_1 \le b$, $p = c(t_0)$, $q = c(t_1)$. The point q is conjugate to p along c(t) if there exists a Jacobi field $J \in J_c(M)$, $J \not\equiv 0$ such that $J(t_0) = J(t_1) = 0$.

Example 9.11. On the sphere S^2 (with induced metric), the South pole is conjugate to the North pole along each geodesic passing through both these points.

Definition 9.12. A point $q \in M$ is conjugate to a point $p \in M$ if there exists a geodesic c(t) passing through p and q such that q is conjugate to p along c(t).

Definition 9.13. A multiplicity of a conjugate point $c(t_1)$ (with respect to a point $c(t_0)$) is the number of linear independent Jacobi fields along c such that $J(t_0) = J(t_1) = 0$, in other words, it is equal to dim $J_c^{t_0,t_1}(M)$, where $J_c^{t_0,t_1}(M) = \{J \in J_c(M) \mid J(t_0) = J(t_1) = 0\}$.

Remark 9.14. Multiplicity does not exceed n-1.

Lemma 9.15. Let $J \in J_c(M)$ be a Jacobi field along a geodesic $c(t) = \exp_p tv$. Suppose J(0) = 0. Then there exist vectors $v, w \in T_{c(0)}M$ s.t. $J(t) = (D \exp_p)(tv)tw$. Here we identify $T_vT_{c(0)}M$ with $T_{c(0)}M$.

Lemma 9.16. A point $q = c(t_1)$ is conjugate to p = c(0) along a geodesic $c(t) = \exp_p tv$ if and only if the point $v_1 = t_1v \in T_pM$ is a critical point of the exponential map \exp_p (i.e. dim $\ker(D\exp_p)(t_1v) > 0$). Multiplicity of q is equal to dim $\ker(D\exp_p)(t_1v)$.

Lemma 9.17. Let $c:[a,b] \to M$ be a geodesic, $a \le t_0 < t_1 \le b$. Suppose that $c(t_1)$ is <u>not</u> conjugate to $c(t_0)$. Take $v \in T_{c(t_0)}M$, $u \in T_{c(t_1)}M$. Then there exists a unique Jacobi field J along c s.t. $J(t_0) = v$, $J(t_1) = u$.

Lemma 9.18. Let $J \in J_c(M)$ be a Jacobi field along a geodesic c(t). Then the function $t \mapsto \langle J(t), c'(t) \rangle$ is <u>linear</u>. More precisely, $\langle J(t), c'(t) \rangle = \langle J(0), c'(0) \rangle + t \langle \frac{D}{dt} J(0), c'(0) \rangle$.

Corollary 9.19. Let $\langle J(t_1), c'(t_1) \rangle = \langle J(t_2), c'(t_2) \rangle$. Then the function $t \mapsto \langle J(t), c'(t) \rangle$ is constant.

Definition 9.20. A Jacobi field $J \in J_c(M)$ is <u>orthogonal</u> if $\langle J, c' \rangle \equiv 0$. The space of all orthogonal Jacobi fields along c is denoted by J_c^{\perp} .

Corollary 9.21. (a) Let J(0) = 0. Then J is orthogonal if and only if $\langle \frac{D}{dt}J(0), c'(0) \rangle = 0$.

(b) $dim J_c^{\perp} = 2n - 2$.

(c) $\dim J_c^{\perp,t_0} = n-1$, where $J_c^{\perp,t_0} = \{J \in J_c(M) \mid \langle J,c' \rangle \equiv 0, J(t_0) = 0\}$.

Example 9.22. Jacobi fields on \mathbb{R}^2 .

Theorem 9.23. Let c be a geodesic. Then every Jacobi field $J \in J_c(M)$ is a variational vector field for some geodesic variation F(s,t) of c.

9.3 Minimal geodesics and conjugate points

Theorem 9.24. Let $c : [0,b] \to M$ be a geodesic and let c(a) be a point conjugate to c(0), 0 < a < b. Then c is <u>not</u> a minimal geodesic between c(0) and c(b).

Lemma 9.25, Corollary 9.26 and Lemma 9.27 serve to prove Theorem 9.24; we skip them here.

Example 9.28. No conjugate points on a flat torus.

Definition 9.29. Let c be a geodesic, p = c(0). A point $q = c(t_0)$ is a <u>cut point</u> of p along c if the geodesic c is minimal on $[0, t_0]$ and is not minimal on [0, t] for $t > t_0$.

A <u>cut locus</u> of p is the set of all cut points of p (with respect to all geodesics though p).

Example 9.30. Cut loci on the sphere S^2 and on a flat torus T^2 .

Fact. If $c(t_0)$ is a cut point of p = c(0) along c, then either

- (a) $c(t_0)$ is the first conjugate point of c(0) along c, or
- (b) there exists a geodesic $\gamma \neq c$ from p to $c(t_0)$ such that $l(\gamma) = l(c)$.

Example 9.31. Basis of the space of Jacobi fields on hyperbolic plane.

9.4 Theorem of Cartan – Hadamard

Definition 9.32. A topological space is simply-connected if for each curve $c:[0,1]\to M$ with c(0)=c(1) there exists a continuous map $F:[0,1]\times \overline{[0,1]}\to M$ such that F(1,t)=c(t), F(0,t)=p for some $p\in M$.

Examples. \mathbb{R}^n is simply-connected, S^n is simply-connected for n > 1; S^1 and T^n (torus) are not simply-connected.

Theorem 9.33 (Cartan – Hadamard). Let M be a complete connected simply-connected Riemannian manifold of non-positive sectional curvature. Then M is diffeomorphic to \mathbb{R}^n , where n is the dimension of M.