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Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (?) Let H3(R) be the set of 3× 3 unit upper-triangular matrices (i.e. the matrices of the form1 x1 x2
0 1 x3
0 0 1

 ,

where x1, x2, x3 ∈ R).

(a) Show that H3(R) is a group with respect to matrix multiplication. This group is called the
Heisenberg group.

(b) Show that the Heisenberg group is a Lie group. What is its dimension?

(c) Prove that the matrices

X1 =

0 1 0
0 0 0
0 0 0

 , X2 =

0 0 1
0 0 0
0 0 0

 , X3 =

0 0 0
0 0 1
0 0 0


form a basis of the tangent space TeH3(R) of the group H3(R) at the neutral element e.

(d) For each k = 1, 2, 3, find an explicit formula for the curve ck : R → H3(R) given by ck(t) =
Exp (tXk).

Solution:

(a) It is an easy computation to check the axioms of a group (i.e H3 is closed under multiplication, there
exists an obvious neutral element (3 × 3 identity matrix), there is an inverse element for each h ∈ H3,
associativity works as always in matrix groups).

(b) The matrix elements (x1, x2, x3) give a global chart on H3, so H3 is a smooth 3-manifold. The mul-
tiplication g1g2 can be written as (x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2 + x1y3, x3 + y3), and the
inverse element g−11 can be written as (x1, x2, x3)−1 = (−x1, x1x3 − x2,−x3), which are smooth maps
H3 ×H3 → H3 and H3 → H3 respectively. Hence, H3 is a Lie group.

(c) To see that the matrices Xi belong to TeH3 consider the paths ci(t) = I + Xit ∈ H3. By definition,
∂

∂xi
= c′i(t) = Xi. So, {X1, X2, X3} is the basis of TeH3 since { ∂

∂x1
, ∂
∂x2

, ∂
∂x3
} is a basis.

(d) Since X2
i = 0 for i = 1, 2, 3 we see that Exp (tXi) = I + Xit.

1.2. Let G,H be Lie groups. A map ϕ : G→ H is called a homomorphism (of Lie groups) if it is smooth
and it is a homomorphism of abstract groups.

Denote by g, h Lie algebras of G and H, and let ϕ : G→ H be a homomorphism.

(a) Show that the differential Dϕ(e) : TeG→ TeH induces a linear map Dϕ : g→ h, where Dϕ(X)
for X ∈ g is the unique left-invariant vector field on H such that Dϕ(X)(e) = Dϕ(X(e)).

(b) Show that for any g ∈ G
Lϕ(g) ◦ ϕ = ϕ ◦ Lg

(c) Show that for any X ∈ g and g ∈ G

Dϕ(X)(ϕ(g)) = Dϕ(X(g))



(d) Show that Dϕ : g → h is a homomorphism of Lie algebras, i.e. a linear map satisfying
Dϕ([X,Y ]) = [Dϕ(X), Dϕ(Y )] for any X,Y ∈ g.

Solution:

(a) The map Dϕ : g→ h defined by Dϕ(X)(e) = Dϕ(X(e)) is clearly linear.

(b) Since ϕ is a homomorphism, we have for h ∈ G

(Lϕ(g) ◦ ϕ)(h) = ϕ(g)ϕ(h) = ϕ(gh) = ϕ(Lg(h)) = ϕ ◦ Lg(h)

(c) Since Dϕ(X) ∈ h, we have

Dϕ(X)(ϕ(g)) = DLϕ(g)(e)Dϕ(X)(e) = DLϕ(g)(e)Dϕ(X(e)) = D(Lϕ(g) ◦ ϕ)(e)X(e) =

= D(ϕ ◦ Lg)X(e) = Dϕ(DLgX(e)) = Dϕ(X(g))

(d) Reproducing the proof of Prop. 6.8 (substituting Lg by ϕ and making use of (c) and Lemma 6.7), we
have for every f ∈ C∞(H) and g ∈ G

(Dϕ ◦ [X,Y ](g))(f) = [X,Y ](g)(f ◦ ϕ) = X(g)Y (f ◦ ϕ)− Y (g)X(f ◦ ϕ) =

= X(g)((Dϕ ◦ Y )(f))− Y (g)((Dϕ ◦X)(f)) =

= X(g)(Dϕ(Y )(f) ◦ ϕ)− Y (g)(Dϕ(X)(f) ◦ ϕ) =

= Dϕ(X(g))(Dϕ(Y )(f))−Dϕ(Y (g))(Dϕ(X)(f)) =

= Dϕ(X)(ϕ(g))(Dϕ(Y )(f))−Dϕ(Y )(ϕ(g))(Dϕ(X)(f)) =

= [Dϕ(X), Dϕ(Y )](ϕ(g))(f)

In particular, taking g = e, we have (Dϕ ◦ [X,Y ])(e) = [Dϕ(X), Dϕ(Y )](e). According to (c), we have
Dϕ([X,Y ])◦ϕ = Dϕ◦[X,Y ], so (Dϕ◦[X,Y ])(e) = Dϕ([X,Y ])(e). Therefore, we have two left-invariant
vector fields Dϕ([X,Y ]) and [Dϕ(X), Dϕ(Y )] coinciding at e, which implies they are equal.

1.3. Let S2 = {x ∈ R3 | x21 + x22 + x23 = 1} be the unit sphere in R3.

Show that there exists no group operation on S2 such that S2 with this group operation and some
smooth structure becomes a Lie group.

Solution:

Assume that S2 has a group operation resulting in a Lie group G. Take any nonzero v ∈ TeG, and define a

left-invariant vector field X(g) = DLg(e)v on G. Then X is a smooth nowhere vanishing field since for every

g ∈ G we have DLg−1(g)X(g) = v 6= 0. The existence of such a field contradicts the Hairy Ball Theorem.


