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Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (%) Let H3(R) be the set of 3 x 3 unit upper-triangular matrices (i.e. the matrices of the form

1 X1 X9
0 1 xr3 1 ,
0 0 1

where x1, 9, z3 € R).

(a) Show that Hs(R) is a group with respect to matrix multiplication. This group is called the
Heisenberg group.

(b) Show that the Heisenberg group is a Lie group. What is its dimension?

(c) Prove that the matrices
010 0 01 0 00
x;=(0oo00|, Xxo=[00o0], x3=[001
0 00 0 00 0 00

form a basis of the tangent space T, H3(R) of the group H3(R) at the neutral element e.

(d) For each k = 1,2,3, find an explicit formula for the curve ¢, : R — H3(R) given by cx(t) =
Exp (tX%).

Solution:

(a) It is an easy computation to check the axioms of a group (i.e Hs is closed under multiplication, there
exists an obvious neutral element (3 x 3 identity matrix), there is an inverse element for each h € Hs,
associativity works as always in matrix groups).

(b) The matrix elements (z1,x2,x3) give a global chart on Hs, so Hj is a smooth 3-manifold. The mul-

tiplication g1g2 can be written as (1,2, 23)(Y1,y2,¥3) = (1 + y1, 22 + y2 + T1Y3, T3 + y3), and the
inverse element g; ' can be written as (x1,x2,23)"" = (—x1, 2123 — T2, —23), which are smooth maps
Hs x H3 — Hs and H3 — Hj respectively. Hence, H3 is a Lie group.

(¢) To see that the matrices X; belong to T. Hs consider the paths ¢;(t) = I + X;t € Hs. By definition,
% = c}(t) = X;. So, {X1, X2, X3} is the basis of T, Hs since {8%1, 6%2’ 6%3} is a basis.

(d) Since X? =0 for i = 1,2,3 we see that Exp (tX;) = I + X;t.
1.2. Let G, H be Lie groups. A map ¢ : G — H is called a homomorphism (of Lie groups) if it is smooth
and it is a homomorphism of abstract groups.

Denote by g, b Lie algebras of G and H, and let ¢ : G — H be a homomorphism.

(a) Show that the differential Dy(e) : T.G — T H induces a linear map Dy : g — b, where Dp(X)
for X € g is the unique left-invariant vector field on H such that Dy(X)(e) = Dp(X(e)).

(b) Show that for any g € G
Logyop=poly
(c) Show that for any X € gand g € G

Dp(X)(#(9)) = Dp(X(9))



(d) Show that Dy : g — b
Do([X,Y]) = [Dp(X), Dp(Y)] for any X,Y € g.

Solution:

(a) The map Dy : g — b defined by Dp(X)(e) = Dp(X(e)) is clearly linear.

(b) Since ¢ is a homomorphism, we have for h € G
(Lo (g) 0 ) (h) = p(g)¢(h) = p(gh) = ¢(Lg(h)) = @ o Ly(h)

(¢) Since Dp(X) € b, we have

Dp(X)(p(9)) = DLy(g)(e) Dp(X)(e) = DLy (g) () Dp(X (e))

= D(Ly(g) 0 p)(e)X(e) =
= D(poLy)X(e) = Dp(DLyX(e))

is a homomorphism of Lie algebras, i.e. a linear map satisfying

Dp(X(g))

(d) Reproducing the proof of Prop. 6.8 (substituting L, by ¢ and making use of (c¢) and Lemma 6.7), we

have for every f € C°(H) and g € G

(Dpo [X,Y](g)(f) = [X,Y(9)(fop) = X(9)Y
(

Y(9)X(foyp)=

= [De(X), Dp(Y)]((9))(f)

(foyp) -

Dy oY)(f)) = Y(9)(Dy e X)(f)) =
(Y)(f) o 9) =Y (9)(Dp(X)(f)
X(9)(De(Y)(f)) = De(Y(9))(Dp(X)(f)) =
(P (De(Y)(f)) = De(Y)(#(9)) (D

X)(f) =

In particular, taking g = e, we have (Dy o [X,Y])(e) = [Dp(X), De(Y)](e). According to (c), we have
Do([X,Y])op = Dpo[X,Y], s0 (Dyo[X,Y])(e) = Dp(|X,Y])(e). Therefore, we have two left-invariant
vector fields Dp([X,Y]) and [D¢(X), De(Y')] coinciding at e, which implies they are equal.

1.3. Let S? = {x € R? | 22 + 23 + 23 = 1} be the unit sphere in R3.

Show that there exists no group operation on S? such that S? with this group operation and some

smooth structure becomes a Lie group.

Solution:

Assume that S? has a group operation resulting in a Lie group G. Take any nonzero v € T.G, and define a

left-invariant vector field X (g) = DLg4(e)v on G. Then X is a smooth nowhere vanishing field since for every
g € G we have DL,-1(g9)X(g) = v # 0. The existence of such a field contradicts the Hairy Ball Theorem.



